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Intuitive Definitions of Complex Systems

System is an entity in terms of parts and relations between them.

Complex system (complex comes from Latin com-  together + plectere  to
twine or braid) is a system composed from relatively many mutually
related  parts.

Complex systems are usally (but not always) intricated - hard to describe or
understand.

Examples of complex systems

http://eldar.cz/cognition/complex/izi636.htm
http://eldar.cz/cognition/complex/#Intuitive%20Definitions%20of%20Complexity
http://eldar.cz/cognition/complex/#Basics%20of%20%28complex%29%20systems%20science
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Parts of human
society:

Markets
Organizations
Language
Internet

Biology:

Cells
Organ – e.g.
brain
Immune
system
Organisms
Populations
Ecosystem

Physics:

Turbulence
Weather
Percolation
Sandpile

The world consists of many complex systems, ranging from our own bodies
to ecosystems to economic systems. Despite their diversity, complex systems
have many structural and functional features in common that can be
effectively simulated using powerful, user-friendly software. As a result,
virtually anyone can explore the nature of complex systems and their
dynamical behavior under a range of assumptions and conditions. (M.
Ruth, B Hannon, Dynamic Modeling Series Preface)

Structural relations define which parts are connected together.
Functional relations define the behavior or dynamics of the system - how does
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the change of state of one part influence the state of other connected parts.

Structurally complex system
A system that can be analyzed into many components having relatively
many relations among them, so that the behavior of each component can
depend on the behavior of many others. (Herbert Simon)

Remember: The number of relationships could be much higher than the
number of components!

Dynamically complex system
A system that involves numerous interacting agents whose aggregate
behaviors are to be understood. Such aggregate activity is nonlinear,
hence it cannot simply be derived from summation of individual
components behavior. (Jerome Singer)

System types Simple structure Complex structure

Simple
dynamics

Example: Pendulum
Model: Analytical -
differential equations

Example: Closed reservoir
of gas
Model: Statistical equations

Complex
dynamics

Example: Double pendulum
Model: Analytical - Complex
differential equations
or simple simulations

Phase portrait of Double
pendulum

Example: Ant pile
Model: Multi-agent models

 

 

Basics of (complex) systems science

Remember: Interconnection of parts matters in complex systems!

Two complementary approaches to system behaviour

Reductionism: The
properites of the whole
system could be
explained in terms of its
parts.

Holism : The whole system cannot be determined
or explained by its component parts alone. Instead,
the system as a whole determines in an important
way how the parts behave.

http://eldar.cz/cognition/complex/models/PENDULUM/doublependulum.html
http://en.wikipedia.org/wiki/File:All.png
http://eldar.cz/cognition/complex/models/Mraveniste.html
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Understanding of
the parts leads to
understanding of
the whole
Accent on parts

To understand the whole we must
understand also the relations between the
parts in the whole system
Accent on relationships

Pragmatic approach rests on a combination of both reductionism and holism.

Feedback

The basic rules of the complex systems could be paradoxically very simple, but
their effects are intricate and unexpected because of feed-back relations
between parts.

Feed-back
The return of a portion of the output of a process or system to the input.

Positive feed-back
Deregulative force
Drives the system out of equilibrium.
Example: Ball on the hilltop, erosion, avalanche, nuclear fission ...

Try to find out other examples.

Negative feed-back
Regulative force
Stabilizes system in the equilibrium.

Examples: Ball in the bowl, thermostat, population size and nutrition,
classical market ...

Complex dynamics rests on balance between positive and negative feed-back
Examples: Predator-prey relationship, Stock market, Daisy world ..

Effect of feed-back in complex systems could be counter-intuitive.
Example: Building of new highways could lead to more traffic jams,
because it initially decreases the waiting times and this increases the
desirability of car driving.

System dynamics

State space (phase space) is an abstract space in which all possible states
of a system are represented, with each possible state of the system
corresponding to one unique point in the state space. Dimensions of state
space represent all relevant parameters of the system. For example state
space of mechanical systems has six dimensions and consists of all possible
values of position and momentum variables.

Dynamics of the system is the set of functions that encode the movement of

http://eldar.cz/cognition/complex/#predator-prey
http://ccl.northwestern.edu/netlogo/models/community/Artificial%20Financial%20Market
http://www.ph.ed.ac.uk/nania/daisyworld/daisyworld.html
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the system from one point in the state space to another.

Trajectory of the system is the sequence of system states.

Fixed point is a point in the state space where the system is in equilibrium
and does'nt change.

Atractor is a part of the state space where some trajectories end.

Attractor types
Fixed point Limit cycle Strange attractor

Dynamical systems can often be modeled by differential
equations dx/dt=v(x), where x(t)=(x1(t), …, xn(t)) is a vector
of state variables, t is time, and v(x)=(v1(x), …, vn(x)) is a
vector of functions that encode the dynamics. For example, in
a chemical reaction, the state variables represent
concentrations. The differential equations represent the kinetic
rate laws, which usually involve nonlinear functions of the
concentrations. Such nonlinear equations are typically
impossible to solve analytically, but one can gain qualitative
insight by imagining an abstract n-dimensional state space
with axes x1, …, xn. As the system evolves, x(t) flows through
state space, guided by the ‘velocity’ field dx/dt = v(x) like a
speck carried along in a steady, viscous fluid. Suppose x(t)
eventually comes to rest at some point x*. Then the velocity
must be zero there, so we call x* a fixed point. It corresponds
to an equilibrium state of the physical system being modeled. If
all small disturbances away from x* damp out, x* is called a
stable fixed point — it acts as an attractor for states in its
vicinity. Another long-term possibility is that x(t) flows
towards a closed loop and eventually circulates around it
forever. Such a loop is called a limit cycle. It represents a self-
sustained oscillation of the physical system. A third possibility
is that x(t) might settle onto a strange attractor, a set of states
on which it wanders forever, never stopping or repeating. Such
erratic, aperiodic motion is considered chaotic if two nearby
states flow away from each other exponentially fast. Long-term
prediction is impossible in a real chaotic system because of
this exponential amplification of small uncertainties or
measurement errors. (Strogatz, 2001)

Example: The predator-prey model
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We study the dynamics of mutually dependent population size of
predators and prey.

The model is supported by analyses of 100 year fur trapping
records of the Hudson's Bay Company.

              

Animation of the system dynamics and the two differential
equations governing the dynamics (Lotka-Volterra equations). X
represents the size of hare population and Y the size of lynx
population.

The portrait of dynamics for different initial x and y
parameters forms a fractal.
More information about this fractal.

Formal definitions of complexity

Non suitable complexity measures for complex systems

There are many formal definitions of complexity available. Only a small portion of
them is suitable for description of complex systems. There are two particular notions of
complexity which are not suitable for description of complex systems but have very
good sense in other domains.

Computational complexity measures how much time or memory a standard
universal computer program needs for solving problems with increasing amount

http://spanky.triumf.ca/www/fractint/volterra-lotka_type.html
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of input data. The dependence of the amount of input data and the required time
or memory could be linaer, logarithmic, polynomial, exponential, etc.

Algorithmic information content (AIC, sometimes also called Kolmogorov
complexity) of a string of bits is defined as the length of the shortest program that
will cause a standard universal computer to print out the string of bits and then
halt. 
Gell-Mann (1995) writes „A random bit string has maximal AIC for its length,
since the shortest program that will cause the standard computer to print it out
and then halt is just the one that says PRINT followed by the string. This property
of AIC, which leads to its being called, on occasion, "algorithmic randomness,"
reveals the unsuitability of the quantity as a measure of complexity, since the
works of Shakespeare have a lower AIC than random gibberish of the same
length that would typically be typed by the proverbial roomful of monkeys.“
The AIC is called monotonic complexity measure because with increasing
randomness it also increases.

Suitable complexity measures

Good measures of system complexity should measure the amount of regularities
in the system (and not its randomness). Such measures should be low for both
very simple systems (where is only one or very few dominant regularities) and
random systems (where are almost no regularities). Such measures are called
non-monotonic. We can say that they are somewhere between order and
randomness - on the „edge of chaos“ (Langton, 1990).

 

Neural Complexity

Neural complexity (Sporns et al., 2000, 2002) is a measure inspired by the cognitive
processes in the brain. It measures how much the change of activity in one part of he
network changes the activity in other parts. The authors described it shortly as a
measure of "the difference that makes difference". Neural complexity is one of many
complexity measures based on mutual information.

Mutual information between two parts of a system is defined:

MI(Xjk,, X-Xjk) = H(Xjk) + H(X- Xjk) – H(X)

There X is the system, Xjk is the j-th permutation of a part of size k and X-Xjk is the
rest of the system.
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Neural complexity is formally the sum of average mutual information between subsets
of the system and the rest of the system

The neural anatomy, neural activity, EEG signal and neural complexity of the brain of
an old (a), adult (b) and very young (c) cat. In the old cat there are mostly local
specialized connections present but the global integrative connections are missing due
to degenrative processes, the result is rather random dynamics. In the adult cat there are
both local and global connections present, the result is complex dynamics. In the young
cat the local connections are not developed yet but the global connections are already
present, the result is regular dynamics (Edelman & Tononi, 2000).

Statistical Complexity

The statistical complexity (Shallizi 2001, 2003, 2004) reflects the intrinsic difficulty of
predicting the future states of the system from the system history. It is the  amount of
information needed about the past of a given point in order to optimally predict its
future. Systems with a high degree of local statistical complexity are ones with intricate
spatio-temporal organization. Statistical complexity is low both for highly disordered
and trivially-ordered systems.

Self-organization and related concepts

Self-organization

Self-organization (First used by Ashby in 1948.). The ability of the system
to autonomously (without being guided or managed by an outside source) 
increase its complexity.

If a local system is an open system receiving relatively stable and appropriate
amount of energy from its environment and the local system is composed from
sufficient number of parts which are able to interact through positive and negative
feedback, there could (depending on some parameters) be established relatively stable
network of feedback loops. This process is called self-organization and the established
dynamic network is called self-organized system.

Examples of self-organisation:

In Physics:

Benard cells - coherent motion of large number of molecules in heated liquid layers.

Belousov-Zhabotinsky reactions - a specific "coctail" of chemical ingredients loops

http://en.wikipedia.org/wiki/B%C3%A9nard_cells
http://en.wikipedia.org/wiki/Belousov%E2%80%93Zhabotinsky_reaction
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through visualy discernable states when it receives thermal (heated) or mechanical
(stirred) energy.

In Biology:

Flocking - a group of organism can self-organise in a relatively coherent whole which
is able to synchronously react on external stimuli.

Ants demo - increasing the length of pheromone trace or the number of ants would lead
to self-organization of the food track (result of stigmergic interaction between agents
and environmnent).

An ecosystem or a whole biosphere - the feedback loops between environment and
organism could lead to stabilisation (homeostatis) of some environmental parameters.

Emergence and self-organization

Traditional definition of emergence
The arising of characteristics of the whole which cannot be attributed to
the parts. There arise new qualitative and not only quantitative changes.
Very vaguely: the whole is more than sum of it parts (an statement made
already by Aristotle in Metaphysics).

Modern definition 
Emergence is „the arising of novel and coherent structures, patterns and
properties during the process of self-organization in complex systems."
(Corning, 2002; Goldstein, 1999)

Common characteristics of emergence:

1. Radical novelty (features not previously observed in the system)
2. A global or macro “level” (i.e., there is some property of

“wholeness”)
3. Coherence or correlation (integrated wholes that maintain themselves

over some period of time)
4. It is the product of a dynamical process (it evolves)
5. It is meaningfull for us (i.e. has some pragmatic value for us – we

can use it).

Weak emergence: new properties arising in systems as a result of the
interactions at an elemental level. The causal conection between the
interactions of the parts and the properties of the whole can be traced in
great detail.

Examples:
Physics: Temperature, Liquidity (surface tension, friction)
Biology: Different levels of organization in living organism (atoms,
molecules, cells, organs, organisms, societies, species, ecosystems)
Social sciences: Language, culture, market

In many cases the relationship between parts and the whole depends on
large scales of space and time.

Domain Elementary level Global level

Geography Flow of water Shape of the river
bed

Brain Neuronal firing Synaptical
changes

Organism Behaviour in specific
situations Ontogeny

Evolution Life of an individual Phylogeny

Language Speech acts Development of
language

http://ccl.northwestern.edu/netlogo/models/Flocking
http://eldar.cz/cognition/complex/models/Mraveniste.html
http://eldar.cz/cognition/complex/#Daisyworld
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Economy Activity of micro-
economical subjects

Macro-
economical
properties

Strong emergence: the properties of the whole supervene on the properties
of the parts. Supervenience describes  causal dependence between sets of
properties. If property B is causaly dependent on property A, it means that
one state of property B could be caused by many states of property A, but
one state of property A causes exactly one state of property B.

Examples:
The relationship between physical body and conscious experience (e.g.
Mind-body or psycho-physical problem)

Problems

Some authors disagree with the above definition of emergence (De Wolf, 2005).
Can there be emergence without self-organzation and vice versa?
What is the relation between quality and quantity? When does a new quality
arise?

Synergy

The combined (cooperative) effects that are produced by two or more
particles, elements, parts or organisms – effects that are not otherwise
attainable. (Corning, 2002)

Example: Lichen and other symbiotic organisms

Adaptability

Adaptability is the ability of a system to maintain its complexity in
changing environment. Often we can find a feed-back between system and
its environment.

System types Constructed Self-organized
Non-adaptable Example: Classical machines Example: Crystals
Adaptable Example: Adaptable robots Example: Living organisms

Daisy world – an example of self-organized adaptive system

Aim: Proof of an biological hypothesis that biosphere as a whole can regulate its
own environment on a global scale. This hypothesis was proposed by James
Lovelock in the early 1970s and he called it the Gaia hypothesis. (Gaia is the
name of the Goddess of Earth in ancient Greek mythology.)
Parts: black and white daisy flowers, environment
Structure of the environment: 2D matrix
Functions:

Black daisies increase and white daisies decrease the temperature of their
environment
The reproduction of daisies depends on the temperature of the environment
(feedback)
The whole system could adapt to external changes of temperature.
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Models:
NetLogo Daisy world model
Generalized model at NANIA

Cellular automatons (CA)

History

1940 - 1960-ties: von Neumann and Ulam formalized CA
1970: An article in Scientific American (Gardner) about 2D CA called Life
(designed by Conway) provoked new interest in CA
1983 Wolfram published article about different classes of behavior in CA

Characteristics

Bottom-up approach - simulation of very simple parts (cells) interacting through
very simple rules in a homogenous and regular environment (matrix) could
lead to extremely complex behavior of the whole system
Precursor of Agent-Based models (ABM)

Discrete space and time
Discrete states - every cell has finite number of states, this number is the same
for all cells
Discrete dynamics - states of cells change synchronously
Local interaction in a homogenous spatial matrix - states of the cells are
dependent on states of neighboring cell

1D cellular automatons

Basic description of a simple cellular automaton (CA) as presented in (Wolfram, 2002). 
This book is available on internet and represents a good introduction to cellular automatons (and other
simple automatons with complex behavior) but it also gained bad reputation due its egocentric tone.

Basic types of rules

Elementary - the state of the cell is dependent on the structure of neighboring
cells (as in the above example)

If the cells could have k different states and the state of the cell is

http://ccl.northwestern.edu/netlogo/models/Daisyworld
http://www.ph.ed.ac.uk/nania/daisyworld/daisyworld.html
http://www.wolframscience.com/nksonline/toc.html


3/23/15 1:59 PMComplex systems tutorial

Page 12 of 26http://eldar.cz/cognition/complex/#Intuitive%20Definitions%20of%20Complexity

dependent on n neighboring cells, then there exist k^(k^n) rules. For
example if each cell could be only in two possible states (the CA is binary)
and the state is dependent on three neighboring cells (including itself) then
there are 2^(2^3) = 256 rules.
From any standard rule you can easily construct a reversible rule.

Totalistic - the state of the cell is dependent on the sum of neighboring cells with
specific states (as in the Game of Life - see the next chapter)

Different rules produce very different behavior.

Four classes of behavior in 1D CA (Wolfram, 1983)

Uniform Repetitive Random Complex

2D Cellular automatons and the Game of Life

Types of 2D neighborhood

von Neumann Moore Hexagonal

Game of Life

Invented by Conway in 1960s.
2D binary CA with Moore neighborhood and totalistic rule:

1. Any live cell with fewer than two live neighbors dies, as if by loneliness.
2. Any live cell with more than three live neighbors dies, as if by

overcrowding.
3. Any live cell with two or three live neighbors lives, unchanged, to the next

generation.
4. Any dead cell with exactly three live neighbors comes to life.

 

From the five cells on the left (so called F-pentomino) evolved one hundred steps a
complex pattern.

http://en.wikipedia.org/wiki/Second_order_cellular_automaton


3/23/15 1:59 PMComplex systems tutorial

Page 13 of 26http://eldar.cz/cognition/complex/#Intuitive%20Definitions%20of%20Complexity

 

Left: An example of an complex oscilator in Life (Gosper's glider gun). Right: Turing
machine implemented in Life (Rendell, 2005).

More about CA dynamics

Attractor basins structure and entropy variation in different classes of CA
rules (Wuensche, 1998)

Self-replication

Self-replication was first investigated by von Neumann in 1940s. The von Neumann
self-reproducing automata is actually a universal constructor' that constructs "any
machine'' in its 29-state cellular space. In particular, it is capable of Turing universal
computation. It solves the self-reproduction problem by reading a tape containing
instructions on how to build a copy of itself, provides the copy with a copy of its own
input tape, and then presses the ON button starting the copy in operation. In the 1980s,
C. Langton and then J. Byl showed that in fact much smaller automata can in fact self-
reproduce.

http://eldar.cz/cognition/complex/articles/wuensche_ddlab_flavor.pdf
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Langton's self-replicating loop

Computational universality of some CAs

In 1960s von Neumann designed CA emulating an Universal Turing machine
In 1980s Life was proved to be equivalent to Universal Turing machine
In 1990s Cook proved the rule 110 in 1D CA to be equivalent to Universal
Turing machine

CA rule 110

 

Generalizations of CAs

More than two states
Extended or "Margolus" neighborhoods (models of gas interaction)
Continuous CA

The states can be real numbers in interval <0; 1> .
This type of CA could be used for simulation of chemical reactions and
diffusion.

Boolean networks
System of N binary-state nodes with K inputs to each node and one of the
possible Boolean functions of K inputs
Proposed by Kauffman in 1969 as a model of genetic regulatory networks.

Discrete dynamical networks (DDN), similar to RBN, but allowing a value range
greater then 2. CA and RBN are special cases of DDN.

http://cocoon.ifs.tuwien.ac.at/info/ca/ca.html#Applicat_Billiard
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Applications of CA

Physical models
Crystal growth
Fluid flow
Percolation
Reaction-diffusion models
Ferromagnetism

Biology
Pattern formations
Cellular growth
Forrest growth
Spread of diseases, species, fire etc.
Genetic regulatory networks

Social sciences
Traffic
Urban Growth

Mathematics
Cryptography
Firing squad problem
Majority problem

 

A seashell with CA-like patterns

Resources about CA on WWW

Mireks's Java Cellebration - one of the best CA tools

Game of Life and Cellular automaton on Wikipedia

CA Tutorial by Alexander Schatten,

"History of Cellular Automata" from Stephen Wolfram's "A New Kind of Science"

General article about Cellular Automata by Cosma Shallizi

The DDLab manual by Andy Wuensche with many information about CA, discrete
dynamical networks and their attractor basins.

Complex Networks

In CA there was interaction possible only between neighbouring cells in a spatial
matrix. But the interaction between active parts of a system could be generally

http://militzer.berkeley.edu/traffic_jams/node4.html
http://www.mirekw.com/ca/mjcell/mjcell.html
http://en.wikipedia.org/wiki/Conway%27s_Game_of_Life
http://en.wikipedia.org/wiki/Cellular_automata
http://cocoon.ifs.tuwien.ac.at/info/ca/ca.html
http://www.wolframscience.com/reference/notes/876b
http://www.cscs.umich.edu/%7Ecrshalizi/notabene/cellular-automata.html
http://eldar.cz/cognition/complex/articles/wuensche_ddlab_flavor.pdf
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described by a network where the active components are represented by nodes and the
interactions by edges. Complex networks are a subgroup of networks with "interesting"
properties. Natural and social networks are often complex.

Motivation for the study of complex networks:

Complex networks are almost everywhere
Many complex networks have similar properties
Structure of interactions affects the resulting dynamics

Examples of complex networks

Human society
Social networks

Economics
Epidemiology
Collaboration
and Citation
networks
Spreading of
innovations

Electric grid
Internet

 

The 1318 transnational
corporations that form the core of

the economy. (Vitali S. et al.,
2011)

Structure of internet (nodes -
servers, edges - connections)

(Hal Burch and Bill Cheswick,
Lumeta Corp.)

Biology

Food chains
Gene regulation
networks
Metabolism networks
Neural networks

Structure of yeast protein
interactions (nodes - proteins,

edges - reactions) (Barabasi et. al.,
2003)
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Neural networks

Macaque cortex network (Young,
1993)

For more examples see Gallery of network images

Basic notions of Graph theory

Graph G = (V, E)
V is the set of vertices (or nodes)
E is the set of oriented or not oriented edges (or links)
Path length is the minimal number of vertices between two vertices
Degree of a vertex ki is the number of edges connected with the node vi
Degree distribution P(k) is the distribution of probabilities that a random vertex
has a degree k
Clustering coefficient for an undirected graph: 

The clustering coefficient Ci for a vertex vi is given by the number of
links between the vertices within its neighbourhood (ejk) divided by the
number of links that could possibly exist between them (In a directed
graph ejk is distinct from ekj, and therefore for each neighbourhood Ni
there are ki(ki - 1) links that could exist among the vertices within the
neighbourhood (ki is the total (in + out) degree of the vertex). In undirected
graphs eij and eji are considered identical. Therefore, if a vertex vi has ki
neighbours, ki(ki - 1)/2 edges could exist among the vertices within the
neighbourhood.

Some properties of complex networks:

Short average path between vertices
Specific degree distribution
High clustering coefficient (in small world networks and some scale-free
networks)

Types of complex networks

Types of complex networks (Huang, 2005)

Random network Small World network Scale-free network

http://www-personal.umich.edu/%7Emejn/networks/
http://www-personal.umich.edu/%7Emejn/networks/
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Random networks

First models of complex networks
Developed in 1960s by Erdos and Rényi
Model

Add edges between nodes with probability p
Properties

Length of paths close to log n (where n is the number of nodes)
Small changes of p can lead to sudden emergence of new characteristics

Giant component (the biggest connected part starts to grow very fast
when p comes to 1/n)

Poisson degree distribution
Different from most real complex networks

Clustering coefficient close to p
Lower then in most real complex networks

Small world networks

Model of human society
According to Milgram´s experiments in 1967 there are only six people
between any two people in the network of people personally knowing each
other (six degrees of separation)

High regularity with few irregular connections leads to low path lengths
Model

Arrange n nodes in a circle and connect k neighbors together
Then add new edges (or rewire the existing ones) with probability p

Properties
Length of paths close to log n
Degree distribution similar to random networks
High clustering coefficient

Scale-free networks

Very common in real complex networks but not omnipresent
Model

Start with few nodes and edges
Add new nodes and connect them with higher probability to nodes with
higher degree (the rich gets richer)
After a while there will emerge nodes with a very high degree (hubs)

Properties
Short path lengths

Scale-free degree distribution 
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Comparison between the degree distribution of scale-free networks (circle) and random
graphs (square) having the same number of nodes and edges. For clarity the same two
distributions are plotted both on a linear (left) and logarithmic (right) scale. The bell-
shaped degree distribution of random graphs peaks at the average degree and decreases
fast for both smaller and larger degrees, indicating that these graphs are statistically
homogeneous. By contrast, the degree distribution of the scale-free network follows the
power law , which appears as a straight line on a logarithmic plot. The continuously
decreasing degree distribution indicates that low-degree nodes have the highest
frequencies; however, there is a broad degree range with non-zero abundance of very
highly connected nodes (hubs) as well. Note that the nodes in a scale-free network do not
fall into two separable classes corresponding to low-degree nodes and hubs, but every
degree between these two limits appears with a frequency given by P(k). (Albert, 2005)

The Potential Implications of Scale-Free Networks (Barabasi et al., 2005):

Computing
Computer networks with scale-free architectures, such as the World Wide
Web, are highly resistant to accidental failures. But they are very
vulnerable to deliberate attacks on hubs.
Eradicating viruses, even known ones, from the Internet will be effectively
impossible.

Medicine
Vaccination campaigns against serious viruses, such as smallpox, might be
most effective if they concentrate on treating hubs--people who have many
connections to others. But identifying such individuals can be difficult.
Mapping out the networks within the human cell could aid researchers in
uncovering and controlling the side effects of drugs. Furthermore,
identifying the hub molecules involved in certain diseases could lead to
new drugs that would target those hubs.

Business and politics
Understanding how companies, industries and economies are interlinked
could help researchers monitor and avoid cascading financial failures.
Studying the spread of a contagion on a scale-free network could offer new
ways for marketers and politicians to propagate their products and ideas.

Resources about complex networks

Chapter about networks in Complex Science for a Complex World.

Exploring complex networks, an article by Strogatz in Nature.

Scale-free networks, an article by Barabasi and Bonabeau in Scientific American.

NetLogo models:

Giant component in random networks
Evolution of small world network
Preferential attachment model of scale-free network

Very short introduction to modeling
methodology

Models are always “wrong” but sometimes could be useful! (Georg E. P.
Box)

All models are abstracted and simplified (like a map of a landscape).
We describe only those parts of reality which are important for us and only
to the extent allowed by our technical limits.
Useful models could help us to get insight into the structure and behaviour
of reality.
Bad models don't tell us anything new and only waste our time (that’s the
better alternative) or can lead to bad prediction about the reality

http://epress.anu.edu.au/cs/mobile_devices/index.html
http://eldar.cz/cognition/complex/articles/SS_exploring_complex_networks.pdf
http://eldar.cz/cognition/complex/articles/barabasi_scale_free.pdf
http://ccl.northwestern.edu/netlogo/models/
http://ccl.northwestern.edu/netlogo/models/GiantComponent
http://ccl.northwestern.edu/netlogo/models/SmallWorlds
http://ccl.northwestern.edu/netlogo/models/PreferentialAttachment
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Logic and modeling:
Deduction – we know the principles and try to predict the system
behavior. (Example: How will the electricity market behave during the
year?)
Induction  - we know the behavior and search for underlying fundamental
principles of system dynamics. Is the model robust? Does the model lead to
the same or similar behavior for a large range parameter values? (Example:
How does the stability arise in a predator-prey ecosystem?)
Abduction – we search for the best explanation (basic assumptions and
parameters) of specific interesting results. (Example: When will the stock
market tend to crash?)

A different look at logical relationship between a multiagent model and reality:
Axelrod (2003) points out: “like deduction model starts with a set of explicit
assumptions. But unlike deduction, it does not prove theorems. Instead, a simulation
generates data that can be analyzed inductively”. Induction comes at the moment of
explaining the behavior of the model. It should be noted that although induction is used
to obtain knowledge about the behavior of a given model, the use of a model to obtain
knowledge about the behavior of the real world refers to the logical process of
abduction. Abduction, also called inference to the best explanation, is amethod of
reasoning in which one looks for the hypothesis that would best explain the relevant
evidence, as in the case when the observation that the grass is wet allows one to
suppose that it rained. (Encyclopedia of Complexity)

Steps of modeling:

What exactly is our problem and what do we want to achieve with the model?
Do we need a model at all?
Are there already similar models?

Choosing the scale
Space – what is the basic part of the system?
Time – what does represent the basic step of the simulation and how far in
the future we want to predict the behavior?

Choosing the aspects of the reality we want to model (abstraction)
Extensive boundaries: How many aspects of reality to include in the system
Intensive boundaries: How detailed will be the description of these
aspects   
Look for simplicity. Always start with simple models and gradually add
new features.

Remember: Without simplicity you will get stuck in tons of data but
too simple models can lose the connection with reality.

What are the key parts, processes and parameters of the model?
Choosing appropriate description and representation of the model
Choosing the modeling tools

Verification  - check if the model does what we suppose it should do.
Validation – check if the model behaves in accord to the reality

“Playing” with the model – repeated executing of the model, changing parameters
or other aspects and observing their effects on the model behavior

For stochastic models statistical analysis of the results is necessary!
This means running the models several times for the same parameters,
gathering the data and analyzing them in Excell, R or other statistical
package.
The amount of gathered data can be quite large

Agent-based models (ABM)
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Agent

The term "agent" means an active, autonomous and situated unit.

Autonomous
Agents are not directed by an external central unit

Situated
Agents interact in and with some kind of shared environment (for example
movement is a type of interaction with environment)
Agents interact locally (in space or in a network)

Reactive agents could be relatively simple (without ability to learn or sometimes
even without memory) but they don't need to be homogenous
Deliberative (or Intelligent) agents have memory and can have a rich
symbolical representation of the enivronment, they can use classical metohods of
artificial intelligence (machine learning, neuronal networks, genetic algorithms) to
make complex decisions, they can adapt on the changing environment and actions
of other agents

Relation between ABM and Multi-agent systems (MAS)

ABM are a subclass of Multi-agent systems (MAS). Typically in MAS agents could be
biological or artificial entitities situated in a real world like a group of animals, group of
cooperating robots or virtual entities situated in a non-simulated environment like
software agents acting in a computer network. In ABM agents are typically software
objects (inter) acting in a simulated environment. ABM could be interpreted as models
of real-world MAS.

Characteristics of ABM:

Bottom-up approach (From basic parts to complex interactions - the macro
parameters are result of intaractions on the micro level.)
Time is discrete.
Basic building blocks are represented by agents (individuals).

Agents are defined by their parameters and recurrent functions which
define the behaviour of the agents.
The behavior is essentially the change of parameters in every step of the
model.
This change depends on the values of the parameters of the agent, the
parameters of other agents and on the local and global parameters of the
environment.

Agents could be adaptive - they change their behaviour in response to the
environmental change.
In some models agents could die and new agents could be introduced.

When to use ABM:

Complex, non-linear or discrete behavior and interaction of agents
Non-homogenous and boundedly rational population of agents
Interaction is local and dependent on some spatial or social structure

Which features of real complex systems can we better understand with the help of
ABM?

Self-organized behavior and decentralized management
Robustnes and phase transition

Logic and modeling

In every model there are present aspects of deduction, induction and abduction. But
according to the questions we ask the emphasis could be on different types of logical
reasoning.
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Deduction – we know the principles and try to predict the system behavior.
Virus (How will a disease spread through the society?)
Traffic (When will the traffic jam arise?)

Induction  - we know the global behavior and search for underlying fundamental
principles of system dynamics. Is the model robust? Does the model lead to the
same or similar behavior for a large range parameter values?

Model of predator-prey interactions at NANIA (How does the stability
arise in a predator-prey ecosystem?)
Termites and Ants (you can also try this alternative ant model) (How does
an emergent property arise in biological system?)
Flocking (How does the cohesion of the flock arise?)
Ethnocentrism (How does a particular kind of behavior evolve in the
population?)
Segregation (How does the ethnical segregation arise?)

Abduction – we search for the best explanation (basic assumptions and
parameters) of specific interesting results.

Cooperation (When will the cooperative behaviour become advantageous?)
Fire (When will the fire consume a major part of the forrest)

Example: Evolution of cooperation in iterated prisoners dilemma
models

Prisoner's dilemma in game theory 
Two agents decide between cooperation and non-cooperation and are rewarded after
their decisions.

Three basic situations could arise:

One of the agents cooperates and the second does not. In this case the non-
cooperating gets the highest reward A and the cooperating agent the lowest
reward D.
If both agents cooperate they both get the reward B.
If they both don't cooperate they both get reward C.
The rewards must satisfy the inequality: A > B > C > D.

Iterated prisonner's dilemma (IPD)
The decisions of agents are repeated and rewards accumulated.

The tournament of different playing strategies surprisingly showed that the best strategy
for IPD is very simple:
Tit for Tat: If you cooperate I also cooperate, if you don't cooperate I also don't
cooperate.

If we encode the strategies into a simple genome and evolve competing populations of
these strategies the Tit for Tat strategy will evolve spontaneously and became dominant
for a reasonable range of rewards.

Other examples:

The evolution of cooperative behavior in spatial environment, see Netlogo model
The evolution of ethnocentrism - spontaneous evolution of cooperation in ethnic
groups with minimal cognitive abilities (without memory), see NetLogo model

Applications:

Conflict resolutions (initially Axelrod tried to use IPD as a model for political
decisions during Cold War)
Economy

Agent-based computational economics (ACE)

http://ccl.northwestern.edu/netlogo/models/Virus
http://ccl.northwestern.edu/netlogo/models/TrafficGrid
http://www.ph.ed.ac.uk/nania/lv/lv.html
http://ccl.northwestern.edu/netlogo/models/Termites
http://ccl.northwestern.edu/netlogo/models/Ants
http://eldar.cz/cognition/complex/models/Mraveniste.html
http://ccl.northwestern.edu/netlogo/models/Flocking
http://ccl.northwestern.edu/netlogo/models/Ethnocentrism
http://ccl.northwestern.edu/netlogo/models/Segregation
http://ccl.northwestern.edu/netlogo/models/Cooperation
http://ccl.northwestern.edu/netlogo/models/Fire
http://ccl.northwestern.edu/netlogo/models/PDBasicEvolutionary
http://ccl.northwestern.edu/netlogo/models/Ethnocentrism
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 (Graphic by T. Eymann)

Aims of ACE (according to Tesfatsion):

Empirical understanding (why some macro patterns emerge in economy)
Normative understanding (how to propose socially desirable economical designs)
Qualitative understanding (what possible behaviors for what possible parameters
can we expect)
Methodological advancement (to provide methods and tools needed to undertake
theoretical studies of economic systems through systematic computational
experiments)

ABM and micro-economical models share the bottom-up approach but in other
aspects they substantially differ.

In the process of formalizing a theory into mathematics it is often the case
that one or more — usually many! — assumptions are made for purposes
of simplification; representative agents are introduced, or a single price
vector is assumed to obtain in the entire economy, or preferences are
considered fixed, or the payoff structure is exactly symmetrical, or common
knowledge is postulated to exist, and so on. It is rarely desirable to
introduce such assumptions, since they are not realistic and their effects
on the results are unknown a priori, but it is expedient to do so. ... it is
typically a relatively easy matter to relax such ‘heroic’ assumptions-of-
simplification in agent-based computational models: agents can be made
diverse and heterogeneous prices can emerge, payoffs may be noisy and all
information can be local.(Axtel, 2000)

Micro-economical
models ABM

analytical solutions computational synthesis
looking for
equilibrium

dynamical systems often without any
equilibrium

description of
behavior emergent behavior

homogenous agents non-homogenous agents
based on variables based on relations

For comprehensive overview see ACE web pages by Leigh Tesfatsion.

Two particularly interesting models implemented in NetLogo:

Artificial stock market by Carlos Goncalves

Model of market without intermediation by Michal Kvasnička

Software tools for ABM

NetLogo

Advantages

Excellent interface
Easy to learn
Very easy to implement a model

http://www.econ.iastate.edu/tesfatsi/ace.htm
http://ccl.northwestern.edu/netlogo/models/community/Artificial%20Financial%20Market
http://www.econ.muni.cz/%7Eqasar/marketmodel/
http://ccl.northwestern.edu/netlogo/docs/
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Wide support and many well documented and publicly available models
3D environment available

Drawbacks

Implemented in Java - slower than other models 
(2-3 times slower than RePast)
Not suitable for larger simulations 
(Inability of the older versions (prior to 4.0) to include external code)

Examples of extremely simple NetLogo Forrest fire model and its modification for
beginners.

RePast

Advantages

Relatively fast (it is basically a set of Java libraries)
Wide support
Suitable for larger simulations

Drawbacks

Relatively hard to learn
Longer implementation times 
(It usually takes 2-3 times more effort to implement the same simple model in
RePast then in NetLogo)

For other ABM tools and more detailed comparation see
http://en.wikipedia.org/wiki/Comparison_of_agent-based_modeling_software

Resources about ABM

A guide for newcomers to agent based modeling in the social sciences - by Robert
Axelrod and Leigh Tesfatsion

ACE web pages by Leigh Tesfatsion

Agent-based modeling: Methods and techniques for simulating human systems by Eric
Bonabeau

Seeing around corners - a popular article about ABM by Jonathan Rauch

Why agents? On the varied motivations for agent computing in the social sciences - an
elaborated analysis of relations between ABM and classical analytical models, by
Robert Axtell

From factors to actors: Computational sociology and agent-based modeling -
sociological approach to ABM by Michael W. Macy and Robert Willer

Complexity of Cooperation Web - by Robert Axelrod

Twenty Years on: The Evolution of Cooperation Revisited - an overview by Robert
Hoffmann

Parochial altruism resources
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