³H Nuclide Safety Data Sheet

Hydrogen-3 [Tritium]

I. PHYSICAL DATA

<table>
<thead>
<tr>
<th>Radiation: Beta (100% abundance)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy:</td>
</tr>
<tr>
<td>Max.: 18.6 keV; Average: 5.7 keV</td>
</tr>
<tr>
<td>Half-Life [T(\frac{1}{2})]:</td>
</tr>
<tr>
<td>Physical T(\frac{1}{2}): 12.3 years</td>
</tr>
<tr>
<td>Biological T(\frac{1}{2}): 10 - 12 days</td>
</tr>
<tr>
<td>Effective T(\frac{1}{2}): 10 - 12 days*</td>
</tr>
</tbody>
</table>

* Large liquid intake (3-4 liters/day) reduces effective T\(\frac{1}{2}\) by a factor of 2+; ³H is easily flushed from the body

<table>
<thead>
<tr>
<th>Specific Activity: 9650 Ci/g [357 TBq/g] max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beta Range:</td>
</tr>
<tr>
<td>Air: 6 mm [0.6 cm; 0.25 inches]</td>
</tr>
<tr>
<td>Water: 0.006 mm [0.0006 cm; 3/10,000 inches]</td>
</tr>
<tr>
<td>Solids/Tissue: Insignificant [No ³H betas pass through the dead layer of skin]</td>
</tr>
</tbody>
</table>

II. RADIOLOGICAL DATA

<table>
<thead>
<tr>
<th>Radiotoxicity: Least radiotoxic of all nuclides; CEDE, ingestion or inhalation:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tritiated water: 1.73E-11 Sv/Bq (0.064 mrem/uCi) of ³H intake</td>
</tr>
<tr>
<td>Organic Compounds: 4.2E-11 Sv/Bq (0.16 mrem/uCi) of ³H intake</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Critical Organ: Body water or tissue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposure Routes: Ingestion, inhalation, puncture, wound, skin contamination absorption</td>
</tr>
<tr>
<td>Radiological Hazard: External Exposure - None from weak ³H beta</td>
</tr>
<tr>
<td>Internal Exposure & Contamination - Primary concern</td>
</tr>
</tbody>
</table>

III. SHIELDING

None required - not an external radiation hazard

IV. DOSIMETRY MONITORING

Urine bioassay is the only readily available method to assess intake [for tritium, no intake = no dose]
Be sure to provide a urine sample to Radiation Safety for confirmatory bioassay whenever your annual ³H use exceeds 8 mCi. If negative, no further bioassay is required unless use exceeds 100 mCi at one time or 1000 mCi in one year, or after any accident/incident in which an intake is suspected

V. DETECTION & MEASUREMENT

Liquid Scintillation Counting is the only readily available method for detecting ³H
NOTE: PORTABLE SURVEY METERS WILL NOT DETECT LABORATORY QUANTITIES OF ³H

VI. SPECIAL PRECAUTIONS

- Avoid skin contamination [absorption], ingestion, inhalation, & injection [all routes of intake]
- Many tritium compounds readily penetrate gloves and skin; handle such compounds remotely and wear double gloves, changing the outer pair at least every 20 minutes.
- While tritiated DNA precursors are considered more toxic than ³H₂O, they are generally less volatile and hence do not normally present a greater hazard
- The inability of direct-reading instruments to detect tritium and the slight permeability of most material to [tritiated] water & hydrogen [tritium] facilitates undetected spread of contamination. Use extreme care in handling and storage [e.g. sealed double or multiple containment] to avoid contamination, especially with high specific activity compounds.
I. PHYSICAL DATA

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiation</td>
<td>Beta (100% abundance)</td>
</tr>
<tr>
<td>Energy: Max.</td>
<td>156 keV; Average: 49 keV</td>
</tr>
<tr>
<td>Physical $T_{1/2}$</td>
<td>5730 years</td>
</tr>
<tr>
<td>Biological $T_{1/2}$</td>
<td>12 days</td>
</tr>
<tr>
<td>Effective $T_{1/2}$</td>
<td>Bound - 12 days; unbound - 40 days</td>
</tr>
<tr>
<td>Specific Activity</td>
<td>4.46 Ci/g [0.165 TBq/g] max.</td>
</tr>
<tr>
<td>Beta Range: Air</td>
<td>24 cm [10 inches]</td>
</tr>
<tr>
<td>Beta Range: Water/Tissue</td>
<td>0.28 mm [0.012 inches]</td>
</tr>
<tr>
<td>Beta Range: Plastic</td>
<td>0.25 mm [0.010 inches]</td>
</tr>
<tr>
<td>~1% of 14C betas transmitted through dead skin layer, i.e. 0.007 cm depth</td>
<td></td>
</tr>
</tbody>
</table>

II. RADIOLOGICAL DATA

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiotoxicity</td>
<td>0.023 mrem/uCi of 14CO$_2$ inhaled;</td>
</tr>
<tr>
<td></td>
<td>2.09 mrem/uCi organic compounds inhaled/ingested</td>
</tr>
<tr>
<td>Critical Organ</td>
<td>Fat tissue [most labeled compounds]; bone [some labeled carbonates]</td>
</tr>
<tr>
<td>Exposure Routes</td>
<td>Ingestion, inhalation, puncture, wound, skin contamination absorption</td>
</tr>
<tr>
<td>Radiological Hazard</td>
<td>External Exposure – None from weak 14C beta</td>
</tr>
<tr>
<td></td>
<td>Internal Exposure & Contamination - Primary concern</td>
</tr>
</tbody>
</table>

III. SHIELDING

None required - mCi quantities not an external radiation hazard

IV. DOSIMETRY MONITORING

Urine bioassay is the most readily available method to assess intake [for 14C, no intake = no dose]
Provide a urine sample to Radiation Safety after any accident/incident in which an intake is suspected

V. DETECTION & MEASUREMENT

<table>
<thead>
<tr>
<th>Survey Meters</th>
<th>Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geiger-Mueller</td>
<td>~10%</td>
</tr>
<tr>
<td>Beta Scintillator</td>
<td>~5%</td>
</tr>
</tbody>
</table>

Wipe Test: Liquid Scintillation Counting is the best readily available method for counting 14C wipe tests

VI. SPECIAL PRECAUTIONS

- Avoid skin contamination [absorption], ingestion, inhalation, & injection [all routes of intake]
- Many 14C compounds readily penetrate gloves and skin; handle such compounds remotely and wear double gloves, changing the outer pair at least every 20 minutes.
I. PHYSICAL DATA

Radiation: Beta (100% abundance)
Energy: Maximum: 1,710 keV; Average: 695 keV
Half-Life:
 - Physical $T_{1/2}$: 14.29 days
 - Biological $T_{1/2}$: Bone ~ 1155 days; Whole Body ~ 257 days
 - Effective $T_{1/2}$: 14.29 days
Specific Activity: 286,500 Ci/g [10,600 TBq/g] max.
Beta Range:
 - Air: 610 cm [240 inches; 20 feet]
 - Water/Tissue: 0.76 cm [0.33 inches]
 - Plastic: 0.61 mm [3/8 inches]

II. RADIOLOGICAL DATA

Radiotoxicity:
 - Inhaled: 94.7 mrem/uCi [Lung] & 15.5 mrem/uCi [CEDE] of 32P
 - Ingested: 29.9 mrem/uCi [Bone Marrow] & 8.77 mrem/uCi [CEDE] of 32P
Critical Organ:
 - Bone [soluble 32P]; Lung [Inhalation]; GI Tract [Ingestion - insoluble compounds]
Exposure Routes: Ingestion, inhalation, puncture, wound, skin contamination absorption
Radiological Hazard: External Exposure [unshielded dose rate at 1 mCi 32P vial mouth: approx. 26 rem/hr], Internal Exposure & Contamination

III. SHIELDING

Shield 32P with 3/8 inch Plexiglas and monitor for Bremstrahlung; If Bremstrahlung X-rays detected outside Plexiglas, apply 1/8 to 1/4 inch lead [Pb] shielding outside Plexiglas.
The accessible dose rate should be background but must be < 2 mR/hr

IV. DOSIMETRY MONITORING

Wear radiation dosimetry monitoring badges [body & ring] if regularly handling mCi quantities of 32P

V. DETECTION & MEASUREMENT

Portable Survey Meters: Geiger-Mueller
Wipe Test: Liquid Scintillation Counting is an acceptable method for counting 32P wipe tests

VI. SPECIAL PRECAUTIONS

- Avoid skin contamination [absorption], ingestion, inhalation, & injection [all routes of intake].
- Store 32P (including waste) behind Plexiglas shielding [3/8 inch thick]; survey (with GM meter) to check adequacy of shielding (accessible dose rate < 2 mR/hr; should be background); apply lead [Pb] shielding outside Plexiglas if needed.
- Use 3/8 inch Plexiglas shielding to minimize exposure while handling 32P.
- Use tools [e.g. Beta Blocks] to handle 32P sources and contaminated objects; avoid direct hand contact.
 - Always have a portable survey meter present and turned on when handling 32P.
- 32P is not volatile, even when heated, and can be ignored as an airborne contaminant unless aerosolized.

1 NCRP Report No. 65, p.88
2 Federal Guidance Report No. 11 [Oak Ridge, TN; Oak Ridge National Laboratory, 1988], p. 122, 156
3 Dupont/NEN, Phosphorous-32 Handling Precautions [Boston, MA; NEN Products, 1985]
I. PHYSICAL DATA

Radiation: Beta (100% abundance)
Energy: Maximum: 248.5 keV; Average: 76.4 keV
Half-Life $[T_{1/2}]$:
 - Physical $T_{1/2}$: 25.3 days
 - Biological $T_{1/2}$: Bone ~ 1155 days; Whole Body ~ 257 days
 - Effective $T_{1/2}$: 25.3 days
Specific Activity: 156,000 Ci/g [5,780 TBq/g] max.
Beta Range:
 - Air: 50 cm [~ 20 inches]
 - Water/Tissue: 0.06 cm [0.024 inches]
 - Plastic: 0.05 cm [0.02 inches]

II. RADIOLOGICAL DATA

Radiotoxicity2: 15.6 mrem/uCi [Lung] & 2.32 mrem/uCi [CEDE] of 33P inhaled
 1.85 mrem/uCi [Bone Marrow] & 0.92 mrem/uCi [CEDE] of 33P ingested
Critical Organ:
 Bone [soluble 33P]; Lung [Inhalation]; GI Tract [Ingestion - insoluble compounds]
Exposure Routes:
 Ingestion, inhalation, puncture, wound, skin contamination absorption
Radiological Hazard:
 External Exposure – mCi quantities not considered an external hazard
 Internal Exposure & Contamination - Primary concern

III. SHIELDING

None required - mCi quantities not an external radiation hazard

IV. DOSIMETRY MONITORING

Urine bioassay is the most readily available method to assess intake [for 33P, no intake = no dose].
Provide a urine sample to Radiation Safety after any accident/incident in which an intake is suspected.
No dosimetry badges needed when working with 33P [beta energy too low to be detected]

V. DETECTION & MEASUREMENT

Portable Survey Meters: Geiger-Mueller
Wipe Test: Liquid Scintillation Counting works well for counting 33P wipe tests

VI. SPECIAL PRECAUTIONS

- Avoid skin contamination [absorption], ingestion, inhalation, & injection [all routes of intake]
- 33P is not volatile, even when heated, and can be ignored as an airborne contaminant3 unless aerosolized.

1 NCRP Report No. 65, p.88
I. PHYSICAL DATA

Radiation:	Beta (100% abundance)
Energy:	Maximum: 167.47 keV; Average: 48.8 keV
Half-Life $[T_{1/2}]$:	Physical $T_{1/2}$: 87.44 days
Biological $T_{1/2}$:	623 days [unbound 35S]; 90 days [bound 35S]
Effective $T_{1/2}$:	44 - 76 days [unbound 35S]

Specific Activity: 42,707 Ci/g [1,580 TBq/g] max.

Beta Range: Air: 26 cm [10.2 inches]
 Water/Tissue: 0.32 mm [0.015 inches]
 Plastic: 0.25 mm [0.010 inches]

II. RADIOLOGICAL DATA

Radiotoxicity1: 2.48 mrem/uCi [CEDE] of 35S inhaled
0.733 mrem/uCi of 35S ingested

Critical Organ: Testis
Exposure Routes: Ingestion, inhalation, puncture, wound, skin contamination absorption
Radiological Hazard: External Exposure – None from weak 35S beta
 Internal Exposure & Contamination - Primary concern

III. SHIELDING

None required - mCi quantities not an external radiation hazard

IV. DOSIMETRY MONITORING

Urine bioassay is the most readily available method to assess intake [for 35S, no intake = no dose]
Provide a urine sample to Radiation Safety after any accident/incident in which an intake is suspected

V. DETECTION & MEASUREMENT

Portable Survey Meters: Geiger-Mueller [-10% efficiency]
 Beta Scintillator [-5% efficiency]

Wipe Test: Liquid Scintillation Counting is the best readily available method for counting 35S wipe tests

VI. SPECIAL PRECAUTIONS

- Avoid skin contamination [absorption], ingestion, inhalation, & injection [all routes of intake]
- Many 35S compounds and metabolites are slightly volatile and may create contamination problems if not sealed or otherwise controlled. This occurs particularly when 35S amino acids are thawed, and when they are added to cell culture media and incubated. Therefore vent thawing 35S vials in a hood. Incubators used with 35S will have an activated charcoal trap placed in the incubator. Possibility of volatilization must be taken into account when surveying after use.

1 Federal Guidance Report No. 11 [Oak Ridge, TN; Oak Ridge National Laboratory, 1988], p. 122,156
Calcium-45 Nuclide Safety Data Sheet

I. PHYSICAL DATA

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiation</td>
<td>Beta (100% abundance)</td>
</tr>
<tr>
<td>Energy</td>
<td>Maximum: 257 keV; Average: 77 keV</td>
</tr>
<tr>
<td>Half-Life [T½]</td>
<td>Physical T½: 162.61 days</td>
</tr>
<tr>
<td></td>
<td>Biological T½: Bone ~ 18,000 days</td>
</tr>
<tr>
<td></td>
<td>Effective T½: 163 Days</td>
</tr>
<tr>
<td>Specific Activity</td>
<td>17,800 Ci/g [659 TBq/g] max.</td>
</tr>
<tr>
<td>Beta Range</td>
<td>Air: 52 cm [20 inches]</td>
</tr>
<tr>
<td></td>
<td>Water/Tissue: 0.062 cm [0.024 inches]</td>
</tr>
<tr>
<td></td>
<td>Plastic: 0.053 cm [0.021 inches]</td>
</tr>
</tbody>
</table>

II. RADIOLOGICAL DATA

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiotoxicity²</td>
<td>35.8 mrem/uCi [Lung] & 16.2 mrem/uCi [Bone] of 45Ca inhaled</td>
</tr>
<tr>
<td>Critical Organ</td>
<td>Bone, Lung [Inhalation]</td>
</tr>
<tr>
<td>Exposure Routes</td>
<td>Ingestion, inhalation, puncture, wound, skin contamination absorption</td>
</tr>
<tr>
<td>Radiological Hazard</td>
<td>External Exposure - mCi quantities not considered an external hazard</td>
</tr>
<tr>
<td></td>
<td>Internal Exposure & Contamination - Primary concern</td>
</tr>
</tbody>
</table>

III. SHIELDING

None required - mCi quantities not an external radiation hazard

IV. DOSIMETRY MONITORING

Urine bioassay is the most readily available method to assess intake. Provide a urine sample to Radiation Safety after any accident/incident in which an intake is suspected. No dosimetry badges needed to work with mCi quantities of 45Ca.

V. DETECTION & MEASUREMENT

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Portable Survey Meters</td>
<td>Geiger-Mueller</td>
</tr>
<tr>
<td>Wipe Test</td>
<td>Liquid Scintillation Counting works well for counting 45Ca wipe tests</td>
</tr>
</tbody>
</table>

VI. SPECIAL PRECAUTIONS

- Avoid skin contamination [absorption], ingestion, inhalation, & injection [all routes of intake]

1 “Calcium-45 Handling Precautions”, E.I. DuPont de Numours & Co., NEN Products [Boston, MA; 1985]
2 Federal Guidance Report No. 11 [Oak Ridge, TN; Oak Ridge National Laboratory, 1988], p. 122, 156
I. PHYSICAL DATA

Radiation: Gamma - 320 keV (9.8% abundance)
 X-ray - 5 keV (22% abundance)
Gamma Constant: 0.018 mR/hr per mCi @ 1.0 meter
 [6.32E-6 mSv/hr per MBq @ 1.0 meter]¹
Half-Life [T½]:
 Physical T½: 27.7 days
 Biological 616 days
 Effective T½: 26.6 days (whole body)
Specific Activity: 9.24E4 Ci/g [3.42E3 TBq/g] max.

II. RADIOLOGICAL DATA

Radiotoxicity: 0.145 mrem/uCi of ⁵¹Cr ingested [CEDE]
 0.334 mrem/uCi of ⁵¹Cr inhaled [CEDE]
Critical Organ: Lower Large Intestine [LLI]
Intake Routes: Ingestion, inhalation, puncture, wound, skin contamination (absorption);
 Radiological Hazard: External & Internal Exposure; Contamination

III. SHIELDING

<table>
<thead>
<tr>
<th>Material</th>
<th>Half Value Layer [HVL]</th>
<th>Tenth Value Layer [TVL]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead [Pb]</td>
<td>2 mm (0.07 inches)</td>
<td>6.6 mm (0.23 inches)</td>
</tr>
<tr>
<td>Concrete</td>
<td>2.8 cm (1.1 inches)</td>
<td>9.3 cm (3.7 inches)</td>
</tr>
<tr>
<td>Plexiglas</td>
<td>4.8 cm (1.9 inches)</td>
<td>16 cm (6.3 inches)</td>
</tr>
</tbody>
</table>

The accessible dose rate should be background but must be < 2 mR/hr

IV. DOSIMETRY MONITORING

Wear radiation dosimetry monitoring badges [body & ring] when handling ⁵¹Cr

V. DETECTION & MEASUREMENT

Portable Survey Meters: Geiger-Mueller
Wipe Test: Liquid Scintillation Counter

VI. SPECIAL PRECAUTIONS

- Store ⁵¹Cr (including waste) behind lead shielding [¼ - ½ inch thick]; survey (with GM meter) to check adequacy of shielding (accessible dose rate < 2 mR/hr; should be background)
- Avoid skin contamination [absorption], ingestion, inhalation, & injection [all routes of intake]
- Use shielding to minimize exposure while handling ⁵¹Cr
- Use tools to handle ⁵¹Cr sources and contaminated objects; avoid direct hand contact

¹ Health Physics & Radiological Health Handbook, 3rd Ed. [Baltimore, MD; Williams & Wilkins, 1998] p. 6-9
I. PHYSICAL DATA

Radiation:
- Gamma: 141 keV (89% abundance)
- X-rays: 18 keV (6% abundance), 21 keV (1.2% abundance)

Gamma Constant: 0.77 R/hr at 1 cm from an unshielded 1 mCi point source

Half-Life \(T_{\frac{1}{2}} \) :
- Physical \(T_{\frac{1}{2}} \): 6.0 hours
- Biological \(T_{\frac{1}{2}} \): ~ 1 day
- Effective \(T_{\frac{1}{2}} \): ~ 4.8 hours

Specific Activity: 5.27E6 Ci/g [1.95E17 Bq/g]

II. RADIOLOGICAL DATA

Radiotoxicity:
- 63 mrem/mCi [1.7E-8 mSv/Bq] of \(^{99m}\)Tc ingested [CEDE]
- 27 mrem/mCi [7.21E-9 mSv/Bq] of \(^{99m}\)Tc inhaled [CEDE]

Critical Organ: Thyroid Gland; Upper GI tract

Exposure Routes: Ingestion, inhalation, puncture, wound, skin contamination absorption

Radiological Hazard: External & Internal Exposure; Contamination

III. SHIELDING

<table>
<thead>
<tr>
<th>Material</th>
<th>Half Value Layer (HVL)</th>
<th>Tenth Value Layer (TVL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead [Pb]</td>
<td><1 mm (<0.035 inches)</td>
<td>1 mm (0.035 inches)</td>
</tr>
</tbody>
</table>

- The accessible dose rate should be background but must be < 2 mR/hr

IV. DOSIMETRY MONITORING

- Always wear radiation dosimetry monitoring badges [body & ring] whenever handling \(^{99m}\)Tc
- Submit a urine sample to Radiation Safety two to 24 hours [i.e. As Soon As Possible] after any suspected intake of \(^{99m}\)Tc; alert Radiation Safety of the short half-lived nuclide involved.

V. DETECTION & MEASUREMENT

Portable Survey Meters Geiger-Mueller

Wipe Test: Liquid Scintillation Counter or Gamma Counter

VI. SPECIAL PRECAUTIONS

- Store \(^{99m}\)Tc behind ¼-inch (~ 0.6 cm) thick lead (Pb) shielding
- Use tools to indirectly handle unshielded sources and potentially contaminated vessels; avoid direct hand contact
- Ensure that an appropriate, operational survey meter is present in the work area and turned on whenever \(^{99m}\)Tc is handled, so that any external exposure issues will be immediately apparent and hence quickly addressed
- Shield waste containers as needed to maintain accessible dose rate ALARA and < 2 mR/hr

1 Dupont/NEN, Technetium-99-m Handling Precautions (Boston, MA: NEN, 1985)
3 Federal Guidance Report No. 11 (Oak Ridge TN; Oak Ridge National Laboratory, 1988) P. 130, 162
I. PHYSICAL DATA

Primary Radiation: Gamma – 245 keV (94% abundance), 171 keV (90% abundance), 23 keV (69% abundance)

Gamma Constant: 8.9E-6 mrem/hr at 30 cm from 1 mCi [9.9E-4 mSv/hr at 30 cm from 1 MBq]

Physical Half-Life $[T_{1/2}]$: 2.80 days

Specific Activity: 4.19E5 Ci/g [1.55E16 Bq/g]

II. RADIOLOGICAL DATA

Radiotoxicity: 1,330 mrem/mCi [3.59E-7 mSv/Bq] of 111In ingested [CEDE]1

Critical Organ: Lower Large Intestine

Intake Routes: Ingestion, inhalation, puncture, wound, skin contamination (absorption)

Radiological Hazard: Internal and External Exposure, Contamination

III. SHIELDING

<table>
<thead>
<tr>
<th>Material</th>
<th>Half Value Layer [HVL]</th>
<th>Tenth Value Layer [TVL]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead [Pb]</td>
<td><1 mm (<0.035 inches)</td>
<td>3 mm (0.035 inches)</td>
</tr>
</tbody>
</table>

→ The accessible dose rate should be background but must be < 2 mR/hr

IV. DOSIMETRY MONITORING

• Always wear radiation dosimetry monitoring badges [body & ring] whenever handling 111In

V. DETECTION & MEASUREMENT

Portable Survey Meters:

- Geiger-Mueller
- Wipe Test: Gamma counter

VI. SPECIAL PRECAUTIONS

- Store 111In behind ⅛-inch (~ 0.6 cm) thick lead (Pb) shielding
- Use tools to indirectly handle unshielded sources and potentially contaminated vessels; avoid direct hand contact
- Ensure that an appropriate, operational survey meter is present in the work area and turned on whenever 111In is handled, so that any external exposure issues will be immediately apparent and hence quickly addressed
- Shield waste containers as needed to maintain accessible dose rate ALARA and < 2 mR/hr

2 Federal Guidance Report No. 11 (Oak Ridge TN; Oak Ridge National Laboratory, 1988) P. 130, 162
I. PHYSICAL DATA

- Radiation:
 - Gamma - 35.5 keV (7% abundance)
 - X-ray - 27 keV (113% abundance)

- Gamma Constant: 0.27 mR/hr per mCi @ 1.0 meter \[7.432E-5 mSv/hr per MBq @ 1.0 \text{ meter}^1\]

- Half-Life \(T_{1/2} \):
 - Physical \(T_{1/2} \): 60.14 days
 - Biological \(T_{1/2} \): 120-138 days (unbound iodine)
 - Effective \(T_{1/2} \): 42 days (unbound iodine)

- Specific Activity: 1.73E4 Ci/g \[642 \text{ TBq/g}\] max.

II. RADIOLOGICAL DATA

- Radiotoxicity\(^2\):
 - 3.44E-7 Sv/Bq (1273 mrem/uCi) of \(^{125}\text{I}\) ingested [Thyroid]
 - 2.16E-7 Sv/Bq (799 mrem/uCi) of \(^{125}\text{I}\) inhaled [Thyroid]

- Critical Organ: Thyroid Gland

- Intake Routes: Ingestion, inhalation, puncture, wound, skin contamination (absorption);

- Radiological Hazard: External & Internal Exposure; Contamination

III. SHIELDING

<table>
<thead>
<tr>
<th>Material</th>
<th>Half Value Layer [HVL]</th>
<th>Tenth Value Layer [TVL]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead [Pb]</td>
<td>0.02 mm (0.0008 inches)</td>
<td>0.07 mm (0.003 inches)</td>
</tr>
</tbody>
</table>

- The accessible dose rate should be background but must be < 2 mR/hr

IV. DOSIMETRY MONITORING

- Always wear radiation dosimetry monitoring badges [body & ring] whenever handling > 10 \(\mu\text{Ci}\) of \(^{125}\text{I}\)
- Conduct a baseline thyroid scan prior to first use of 1 mCi or more of radioactive iodine
- Conduct thyroid scan no earlier than 6 hours but within 72 hours of handling 1 mCi or more of \(^{125}\text{I}\) or after any suspected intake

V. DETECTION & MEASUREMENT

- Portable Survey Meters:
 - Geiger-Mueller
 - Low Energy Gamma Detector \([-19\% \text{ eff. for } ^{125}\text{I}]\) for contamination surveys
- Wipe Test: Liquid Scintillation Counter or Gamma Counter

VI. SPECIAL PRECAUTIONS

- Avoid skin contamination [absorption], ingestion, inhalation, & injection [all routes of intake]
- Use shielding [lead or leaded Plexiglas] to minimize exposure while handling mCi quantities of \(^{125}\text{I}\)
- Avoid making low pH [acidic] solutions containing \(^{125}\text{I}\) to avoid volatilization
- For iodinations:
 - Use a cannula adapter needle to vent stock vials of \(^{125}\text{I}\) used; this prevents puff releases
 - Cover test tubes used to count or separate fractions from iodinations with parafilm or other tight caps to prevent release while counting or moving outside the fume hood.

1 Health Physics & Radiological Health Handbook, 3rd Ed. [Baltimore, MD: Williams & Wilkins, 1998] p. 6-11
2 Federal Guidance Report No. 11 (Oak Ridge TN; Oak Ridge National Laboratory, 1988) P. 136, 166
I. PHYSICAL DATA
Radiation: Gammas & X-rays: primary 364 keV (81% abundance); others 4 – 723 keV
Betas: primary 606 keV (89% abundance); others 248 – 807 keV
Gamma Constant: 0.28 mR/hr per mCi @ 1.0 meter \[7.647 \times 10^{-5} \text{ mSv/hr per MBq @ 1.0 meter}\]¹
Half-Life \[T_{1/2}\]:
 - Physical \[T_{1/2}\]: 8.04 days
 - Biological \[T_{1/2}\]: 120-138 days (unbound iodine)
 - Effective \[T_{1/2}\]: 7.6 days (unbound iodine)
Specific Activity: 1.24E5 Ci/g \[4,600 \text{ TBq/g}\] max.

II. RADIOLOGICAL DATA
Radiotoxicity²: 4.76 E-7 Sv/Bq (1.76 rem/uCi) of \(^{131}\text{I}\) ingested [Thyroid]
 2.92 E-7 Sv/Bq (1.08 rem/uCi) of \(^{131}\text{I}\) inhaled [Thyroid]
Critical Organ: Thyroid Gland
Intake Routes: Ingestion, inhalation, puncture, wound, skin contamination (absorption);
Radiological Hazard: External & Internal Exposure; Contamination

III. SHIELDING
 - Half Value Layer [HVL]: 3 mm (0.12 inches)
 - Tenth Value Layer [TVL]: 11 mm (0.43 inches)
→ The accessible dose rate should be background but must be < 2 mR/hr

IV. DOSIMETRY MONITORING
- Always wear radiation dosimetry monitoring badges [body & ring] whenever handling \(^{131}\text{I}\)
- Conduct a baseline thyroid scan prior to first use of radioactive iodine
- Conduct thyroid scan no earlier than 6 hours but within 72 hours of handling 1 mCi or more of \(^{131}\text{I}\) or after any suspected intake

V. DETECTION & MEASUREMENT
Portable Survey Meters:
 - Geiger-Mueller to assess shielding effectiveness & contamination
Wipe Test:
 - Liquid Scintillation Counter or Gamma Counter

VI. SPECIAL PRECAUTIONS
- Avoid skin contamination [absorption], ingestion, inhalation, & injection [all routes of intake]
- Use shielding [lead or leaded Plexiglas] to minimize exposure while handling mCi quantities of \(^{131}\text{I}\)
- Avoid making low pH [acidic] solutions containing \(^{131}\text{I}\) to avoid volatilization
- For iodinations:
 - Use a cannula adapter needle to vent stock vials of \(^{131}\text{I}\) used; this prevents puff releases
 - Cover test tubes used to count or separate fractions from iodinations with parafilm or other tight caps to prevent release while counting or moving outside the fume hood.

¹ Health Physics & Radiological Health Handbook, 3rd Ed. [Baltimore, MD; Williams & Wilkins, 1998] p. 6-11
² Federal Guidance Report No. 11 (Oak Ridge TN; Oak Ridge National Laboratory, 1988) P. 136, 166