Reduzierung der Mobilisierbarkeit von Schwermetallen in Untertagedeponien
Reduzierung der
Mobilisierbarkeit von
Schwermetallen in
Untertagedeponien

Entwicklung einfacher
Strategien

Horst-Jürgen Herbert
Christian Reichelt

November 2009

Anmerkung:
Die diesem Bericht zugrunde-
liegenden Arbeiten wurden mit
mitteln des Bundesministeriums,
für Bildung und Forschung
(BMBF) unter dem Förderkenn-
zeichen 02 C 0973 gefördert.

Die Arbeiten wurden von der Ge-
sellschaft für Anlagen- und Reaktor-
sicherheit (GRS) mbH durchgeführt.

Die Verantwortung für den Inhalt
dieser Veröffentlichung liegt allein
bei den Autoren.
Deskriptoren:
Auslaugung, Chemische Analyse, Geochemische Modellierung, Mobilisierbarkeit, Schadstofffreisetzung, Schwermetalle, Zuschlagstoffe
Inhaltsverzeichnis

1 Einleitung .. 1

2 Grundlagen ... 5
 2.1 Untersuchungen zur Schadstoffmobilisierung aus Abfällen 5
 2.2 Bedeutung langsamer Freisetzungsprozesse 6
 2.3 Minimierung der Schadstofffreisetzung .. 9

3 Methodik ... 13
 3.1 Experimentelle Methoden - Elutionsversuche zur Untersuchung langsamer Schadstofffreisetzungen ... 13
 3.1.1 ELISA-Versuche ... 13
 3.1.2 Batch-Versuche ... 16
 3.2 Analytische Methoden .. 16
 3.2.1 Aufschlussmethoden ... 16
 3.2.2 Chemische Analyse ... 17
 3.2.3 Titration .. 17
 3.2.4 Röntgenographische Phasenanalyse .. 17
 3.3 Geochemische Modellrechnungen ... 17
 3.3.1 Datenbasis ... 19
 3.3.2 Datenbasis zur Berechnung komplexer SiAl-Systeme in salinaren Lösungen ... 25
 3.3.3 Geochemische Modellierung mit EQ3/6 .. 27
 3.4 Modellierung der Reaktionen der Abfälle mit IP21-Lösung 27
 3.5 Praktische Vorgehensweise ... 28

4 Materialien .. 29
 4.1 Feststoffe ... 29
 4.2 Lösungen ... 31

5 Durchgeführte Arbeiten ... 33
 5.1 AP 1 - Schadstoffmobilisierung unter Normalbedingungen 33
 5.1.1 AS 1.1 - Experimentelle Untersuchungen zur Schadstoffmobilisierung 33
5.1.2 AS 1.2 - Geochemische Modellrechnungen zur Schadstofffreisetzung 35
5.2 AP 2 - Entwicklung von Strategien zur Minimierung des Quellterms 35
5.3 AP 3 - Überprüfung der verringerten Schadstoffmobilisierung 36
5.3.1 Versuche zur Quantifizierung des pH-Einflusses auf die Schwermetallmobilisierung .. 36
5.3.2 Versuche zur Reduzierung der Schwermetallmobilisierung durch Mischen von Abfällen.. 36

6 Ergebnisse ... 39
6.1 Reaktion der Flugasche CA528 mit IP21-Lösung ... 39
6.1.1 CA528 - Lisa-Versuche ... 39
6.1.2 CA528 - Batch-Versuche ... 48
6.1.3 CA528 - Vergleich der Ergebnisse aus LISA- und Batch-Versuchen 54
6.1.4 CA528 - Geochemische Modellierung und Vergleich mit Experimenten ... 56
6.1.5 Ableitbare Aussagen aus der Anpassung der geochemischen Modellierung an die experimentellen Ergebnisse .. 66
6.2 Reaktion des Filterstaubs CA539 mit IP21-Lösung ... 68
6.2.1 CA539 - Lisa-Versuche ... 68
6.2.2 CA539 - Batch-Versuche ... 77
6.2.3 CA539 - Vergleich der Ergebnisse aus LISA- und Batch-Versuchen 83
6.2.4 CA539 - Geochemische Modellierung und Vergleich mit experimentellen Ergebnissen ... 85
6.2.5 Ableitbare Aussagen aus der Anpassung der geochemischen Modellierung an die experimentellen Ergebnisse .. 93
6.3 Reaktion des Filterstaubs CA606 mit IP21-Lösung ... 94
6.3.1 CA606 - Lisa-Versuche ... 94
6.3.2 CA606 - Batch-Versuche ... 103
6.3.3 CA606 - Vergleich der Ergebnisse aus LISA- und Batch-Versuchen 109
6.3.4 CA606 - Geochemische Modellierung und Vergleich mit experimentellen Ergebnissen ... 111
6.3.5 Ableitbare Aussagen aus der Anpassung der geochemischen Modellierung an die experimentellen Ergebnisse .. 119
6.4 Reaktion MVA-Schlacke CA608 mit IP21-Lösung ... 120
1 Einleitung

\(^1\) Zuletzt geändert durch Verordnung vom 26.11.2002

Ziel des Vorhabens war die Entwicklung von anwendbaren Strategien, um bei untertägigen Abfalldeponierungen eine Verringerung einer durch Einwirkung von Wässern verursachten Schadstofffreisetzung zu bewirken. Die Arbeiten konzentrierten sich beispielhaft auf die Schwermetalle Cd, Pb und Zn.

Bei den Untersuchungen zur Schadstofffreisetzung aus Abfällen unter Normalbedingungen wurden erstmals auch langsam ablaufende Prozesse gezielt untersucht. Derartige Prozesse sind insbesondere bei der Bewertung der langfristigen Wirksamkeit der Maßnahmen zur Reduzierung von Schadstofffreisetzungen von Bedeutung. Auf der Basis der experimentellen Daten wurden geochemische Modelle entwickelt, die die Lösungsentwicklung beschreiben. Sind die Reaktionen, die zur Schwermetallfreisetzung in Lösung führen, identifiziert und anhand der experimentellen Daten quantifiziert,
können Strategien zur Minimierung der Quellterme entwickelt werden, die in der gezielten Beeinflussung des geochemischen Milieus bestehen (z. B. durch Zugabe von Braunkohlenfilteraschen o. ä. in geeigneten Mengen). Geochemische Modellrechnungen wurden dabei als Prognoseinstrumentarium eingesetzt, um geeignete Systeme bzw. optimale Mischungsverhältnisse zu identifizieren. Anschließend werden erneut Auslauguntersuchungen durchgeführt, um die Wirksamkeit der Strategien zu überprüfen.

Ein wichtiges übergeordnetes Ziel des Vorhabens war es, ein Schema zur Ableitung von Strategien zur Minimierung des Quellterms zu entwickeln, das über die im Rahmen des Vorhabens betrachteten Fälle hinaus auf andere Schwermetalle und Systeme übertragbar ist.
2 Grundlagen

2.1 Untersuchungen zur Schadstoffmobilisierung aus Abfällen

Tab. 2.1 Beziehungen zwischen mobilisierten Schadstoffanteilen und pH-Wert

<table>
<thead>
<tr>
<th>pH-Abhängigkeit</th>
<th>Elemente</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni, Pb, Zn</td>
<td>Cu, Cd</td>
</tr>
<tr>
<td>Cr-G, Mo, Sb, Se</td>
<td>As, Hg, V</td>
</tr>
</tbody>
</table>

keine erkennbare pH-Abhängigkeit beim vorliegenden Datenpool
In vielen Auslauguntersuchungen von Abfällen wurde beobachtet, dass nur ein gewisser Anteil (oft zwischen 10 und 50 %) eines Schadstoffes unter den gegebenen Versuchsbedingungen mobilisierbar ist /HER 96/, /MOE 00/, /MOE 02/. Eine Aussage, ob dies auf nicht erfasste langsame Freisetzungsprozesse zurückzuführen ist oder tatsächlich auf stabile Bindungsformen, ist anhand der bisherigen Ergebnisse nicht möglich.

Die Reaktionszeit als Einflussgröße wurde also in früheren Auslaugversuchen nicht näher betrachtet. Da die Versuchsduern in den einzelnen Schritten jeweils auf maximal einige Tage festgelegt waren, wurden bisher im Wesentlichen nur schnell ablauende Reaktionen beobachtet. Langsame, über Wochen und Monate dauernde Freisetzungsprozesse wurden dagegen bisher nicht berücksichtigt. Die Geschwindigkeit von derartigen langsamen Prozessen hängt von der Größe der Mineraloberflächen und den spezifischen Reaktionsraten ab. Während die Reaktionsrate eine materialspezifische Eigenschaft ist, kann die verfügbare Oberfläche durch Zerkleinern vergrößert werden (diesem Aspekt wird beim Kaskadenauslaugverfahren durch Zerkleinern der Probe auf < 0,5 mm zwar im begrenzten Maße Rechnung getragen; sehr langsame Prozesse werden somit aber trotzdem nicht oder nur unvollständig erfasst).

2.2 Bedeutung langsamer Freisetzungsprozesse

Das Feststoff-Lösungsverhältnis wird aus Masse und Volumen an abgelagerten Abfällen und dem verbleibenden Hohlraumvolumen der UTD unter Berücksichtigung der Dichte und Porosität des Abfalls berechnet. Dabei wird der Einfachheit halber angenommen, dass das gesamte Hohlraumvolumen der UTD instantan von Gebirgslösung...
geflutet wird. In Tab. 2.2 sind realistische Werte für die verschiedenen Parameter, die in die Berechnung einfließen, zusammengestellt. Das Feststoff-Lösungsverhältnis in dieser Modell-UTD liegt bei 1,29 kg/l.

Tab. 2.2 Modellannahmen zur Berechnung der Schadstofffreisetzungen

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bleigehalt im Abfall</td>
<td>1 Gew.-%</td>
</tr>
<tr>
<td></td>
<td>davon 30 % sofort löslich</td>
</tr>
<tr>
<td></td>
<td>70 % langsam löslich</td>
</tr>
<tr>
<td>spez. Oberfläche des Abfalls</td>
<td>50 m²/g</td>
</tr>
<tr>
<td>spezifische Auflösungsraten für Minerale</td>
<td>$10^{-10} - 10^{-12}$ mol/m²/s</td>
</tr>
<tr>
<td>Brutto-Befüllungsgrad der UTD</td>
<td>60 % des gesamten Hohlraumvolumens</td>
</tr>
<tr>
<td>Porosität des Abfalls</td>
<td>50 %</td>
</tr>
<tr>
<td>Dichte des Abfalls</td>
<td>3 kg/l</td>
</tr>
<tr>
<td>Dichte des Abfalls</td>
<td>3 kg/l</td>
</tr>
</tbody>
</table>

Auf dieser Basis können die Bleikonzentrationen in Lösung, die unter den angegebenen Randbedingungen in einer UTD über einen Zeitraum von 10 Jahren auftreten, berechnet werden. Vereinfachend wird unterstellt, dass keine chemischen Reaktionen ablaufen, die zu einer weiteren Veränderung der Bleikonzentrationen in Lösung führen. Die Ergebnisse sind in Abb. 2.2 dargestellt. Durch die schnelle Freisetzung ergibt sich eine Bleikonzentration in Lösung von 3,86 g/l (Achsenabschnitt in der Abbildung, derartige Konzentrationen sind bei Auslaugungsversuchen in unserem Labor bei einigen Abfällen bereits beobachtet worden /MOE 00/). Deutlich zu erkennen ist ferner, dass bei der höchsten Auflösungsrate von 10^{-10} mol/m²/s der Anteil des langsamen Freisetzungsvorgangs am Blei-Quellterm nach 10 Jahren bei ca. 50 % liegt und damit nicht mehr zu vernachlässigen ist. Zu beachten ist, dass zu diesem Zeitpunkt trotzdem erst knapp 30 % des Gesamtanteils an schwerlöslichem Blei im Abfall in Lösung gegangen sind.

Abb. 2.1 Spezifische Oberflächen und spezifische Verwitterungsraten bei pH 5 von Mineralphasen

Auf dieser Basis können die Bleikonzentrationen in Lösung, die unter den angegebenen Randbedingungen in einer UTD über einen Zeitraum von 10 Jahren auftreten, berechnet werden. Vereinfachend wird unterstellt, dass keine chemischen Reaktionen ablaufen, die zu einer weiteren Veränderung der Bleikonzentrationen in Lösung führen. Die Ergebnisse sind in Abb. 2.2 dargestellt. Durch die schnelle Freisetzung ergibt sich eine Bleikonzentration in Lösung von 3,86 g/l (Achsenabschnitt in der Abbildung, derartige Konzentrationen sind bei Auslaugungsversuchen in unserem Labor bei einigen Abfällen bereits beobachtet worden /MOE 00/). Deutlich zu erkennen ist ferner, dass bei der höchsten Auflösungsrate von 10^{-10} mol/m²/s der Anteil des langsamen Freisetzungsvorgangs am Blei-Quellterm nach 10 Jahren bei ca. 50 % liegt und damit nicht mehr zu vernachlässigen ist. Zu beachten ist, dass zu diesem Zeitpunkt trotzdem erst knapp 30 % des Gesamtanteils an schwerlöslichem Blei im Abfall in Lösung gegangen sind.

Abb. 2.1 Spezifische Oberflächen und spezifische Verwitterungsraten bei pH 5 von Mineralphasen

2.3 Minimierung der Schadstofffreisetzung

Strategien zur Immobilisierung von Schadstoffen basieren im Allgemeinen darauf, dass die Schadstoffe physikalisch sorbiert, in einer Matrix eingeschlossen oder die chemische Form des Schadstoffes geändert wird, so dass eine verminderte Mobilisierbarkeit
der gefährlichen Inhaltsstoffe resultiert /MEA 95/. Verbunden ist damit in aller Regel eine Behandlung der Abfälle, wodurch zum einen die hydraulischen Eigenschaften der Abfälle derart verändert werden, dass diese weniger wasserdurchlässig sind, zum anderen, insbesondere bei mineralischen Abfällen, die Schadstoffe auch chemisch fixiert werden. Darüber hinaus kann durch Zugabe geeigneter Stoffe das geochemische Milieu gezielt derart beeinflusst werden, dass die Löslichkeit des Schadstoffes minimiert wird.

3 Methodik

3.1 Experimentelle Methoden - Elutionsversuche zur Untersuchung langsamer Schadstofffreisetzungen

3.1.1 ELISA-Versuche

ELISA-Versuche wurden in Säulen angesetzt, die in der GRS konzipiert und nach eigenen Plänen gebaut wurden.

Abb. 3.1 Schema des ELISA-Versuchs

Der Vorteil einer derartigen Versuchsdurchführung liegt darin, dass ein zeitlich kontinuierlicher Schadstoffstrom aus dem Abfall in ein sukzessive kleiner werdendes Lösungsvolumen freigesetzt wird, wodurch die Konzentration in der Lösung supralinear ansteigt. Es ist zu erwarten, dass selbst relativ kleine Freisetzungsrationen damit besser detektierbar werden. Unter den obigen Randbedingungen erhöht sich die Bleikonzentration in einem Jahr z. B. um ca. 13 %. In Abb. 3.2 sind die Bleikonzentrationen in Lösung für einen langfristigen Batch-Versuch (bei gleich bleibendem s/f-Verhältnis) und einen ELISA-Versuch gegenüber gestellt. Da die s/f-Verhältnisse in den einzelnen Stufen bekannt sind, kann aus der Konzentrationskurve die lineare Rate für den langsame Freisetzungsprozess errechnet werden.
Abb. 3.2 Unterschiedliche Entwicklung der Bleikonzentrationen in Lösung für einen langfristigen Batch-Versuch und einen ELISA-Versuch

Abb. 3.3 Die ELISA-Zelle im Einsatz
3.1.2 Batch-Versuche

In den Batch-Versuchen wurde auszulaugender Feststoff mit Lösung in einem festen Verhältnis im Überkopfschüttler unterschiedlich lange gemischt. Die Versuche wurden in Centrex-Röhrchen (Abb. 3.4), speziellen Zentrifugenröhrchen aus Kunststoff durchgeführt, die sich bereits in früheren Versuchen (z. B. HAG 07) bewährt haben. Die Röhrchen sind in der Mitte geteilt und haben am untern Ende des Oberteils eine PTFE-Filtermembran mit einer Porenweite von 0,45 µm. Der eigentliche Batch-Versuch wird im oberen Teil angesetzt, nach Versuchsende wird das Röhrchen in die Zentrifuge eingesetzt und die Elutionslösung in den unteren Teil filtriert.

Abb. 3.4 Centrex-Röhrchen (links) für Batch-Versuche im Überkopfschüttler (rechts)

3.2 Analytische Methoden

3.2.1 Aufschlussmethoden

Das homogenisierte Probematerial wurde mittels Druckaufschluss mit Flusssäure in Lösung gebracht.
3.2.2 Chemische Analyse

Die chemische Analytik wurde im Geochemielabor der GRS mittels ICP-OES (Ion coupled plasma optical emission spectrometer), ICP-MS (Ion coupled plasma mass spectrometer) und eines potentiometrischen Titrierautomaten durchgeführt. Mit der ICP-OES des Typs JY 50 P von ISA Jobin Yvon mit einem argongespülten Polychromator und einem zusätzlichen Monochromator wurden die Elemente Al, B, Ca, Cr, Fe, K, Cu, Mg, Mn, Na, Ni, Si, S, Ti, V, Zn gemessen. Mit der ICP-MS des Typs VG Plasma Quad 2 der Firma Fisons Instruments wurden die Elemente Ba, Be, Ce, Co, La, Nb, Nd, Pb, Sn, Sr Ti, Th, U, V, W, Y und Zr bestimmt. Die Messungen werden nach DIN EN ISO 11885 mit Anpassungen an die hochsalinare Matrix und DIN 38403-29 durchgeführt.

3.2.3 Titration

Chlorid wurde argentometrisch durch potentiometrische Titration bestimmt. Das Verfahren ist abgeleitet aus der DIN 38405 (Teil 1). Die Qualitätssicherung erfolgt über statistische Überwachung.

3.2.4 Röntgenographische Phasenanalyse

3.3 Geochemische Modellrechnungen

Geochemische Modellrechnungen werden seit vielen Jahren erfolgreich zur Interpretation und Simulation von Zuständen und Prozessen in Lösungssystemen angewandt. Mit ihrer Hilfe lässt sich z. B. klären, in welcher Speziationssform
Wasserinhaltstoffe vorliegen, ob thermodynamisch eine Fällung oder Auflösung bestimmter Minerale möglich ist oder wie sich die Wasser zusammensetzung beim Kontakt mit einer Festphase verändert.

Voraussetzung für derartige Modellrechnungen sind thermodynamische Daten für Speziationen- und Löslichkeitsberechnungen, d. h. die Kenntnis der thermodynamischen Aktivitäten aller beteiligten Reaktionspartner, der Löslichkeiten aller relevanter Bodenkörper und der Bildungskonstanten aller relevanter Komplexe in den betrachteten Systemen.

Das Pitzer-Modell

Die Beschreibung dieser spezifischen Wechselwirkungen erfolgt über die binären und ternären Pitzerkoeffizienten, die durch Anpassung an thermodynamische Daten von Elektrolytlösungen einfacher Zusammensetzung bestimmt werden, bei denen die Ionenaktivität oder die Wasseraktivität in Abhängigkeit von der Konzentration der gelöš-
ten Salze untersucht wird. Als die wichtigsten Primärdaten für die Ermittlung von Pitzerkoeficienten sind isopiestiche Messungen, Aktivitätsbestimmungen über elektrochemische Zellspannungen, Dampfdruckniedrigungen und Löslichkeitsbestimmungen zu nennen.

Die binären Pitzerkoeffizienten für ein Salzpaar MA ($\beta^{(0)}_{MA}$, $\beta^{(1)}_{MA}$, $\beta^{(2)}_{MA}$ und C^0_{MA}) sind Wechselwirkungsparameter, die in reinen Elektrolytlösungen ermittelt werden. Dabei sollten möglichst Messdaten von sehr verdünnten bis zu konzentrierten Lösungen vorliegen. Die ternären Pitzerkoeffizienten, die die Wechselwirkung zwischen zwei Kationen bzw. zwei Anionen ($\theta_{MM'}$, $\theta_{AA'}$) sowie die Wechselwirkungen bei Ionentriplets, d. h. zwischen zwei Kationen und einem Anion bzw. zwischen einem Kation und zwei Anionen ($\psi_{MM'AA}$, $\psi_{MAA'}$), beschreiben, ermittelt man normalerweise aus den thermodynamischen Daten von Lösungen mit zwei Salzen, die ein gemeinsames Ion aufweisen (z. B. Lösungen mit ZnCl₂ und NaCl). Häufig werden diese Pitzerkoeffizienten aus Löslichkeitskurven berechnet. Falls mehrere Lösungssysteme einen ternären Pitzerkoeffizienten gemeinsam haben (wie z. B. die Systeme Na-Cd-SO₄-H₂O sowie Na-CdCl-H₂O den Parameter $\theta_{Na,Cd}$), werden im Normalfall alle ternären Parameter dieser Systeme auch gemeinsam bestimmt. Gelegentlich hat es sich aufgrund des vorhandenen Datenmaterials aber als sinnvoll erwiesen, einen ternären Pitzerkoeffizienten nur in einem System anzupassen und diesen Wert bei der Bestimmung der übrigen ternären Koeffizienten vorzugeben.

Ein Vorteil der Pitzer-Theorie ist, dass beim Übergang zu Lösungen komplexer Zusammensetzung keine neuen Wechselwirkungsparameter auftreten, d. h., sie kommt mit einer relativ geringen Zahl von Parametern aus, die sich jeweils in einfachen Systemen aus maximal drei bis vier Ionen bestimmen lassen.

3.3.1 Datenbasis

Die drei zurzeit im Betrieb befindlichen Untertagedeponien für chemisch-toxische Abfälle in Deutschland, Zielitz, Herfa-Neurode und Heilbronn sind in ehemaligen Kali- und Salzbergwerken eingerichtet. Im Falle eines Lösungszutritts bilden sich dort hochkonzentrierte Salzlösungen. Für die Modellierung der Schadstofffreisetzung durch die Einwirkung solcher Lösungen auf die Abfälle müssen alle relevanten thermodynamischen Daten auf der Basis der Pitzer-Theorie vorliegen.
3.3.1.1 Datenbasis für salinare Lösungen

3.3.1.2 Datenbasis für Schwermetalle in salinar Lösungen

Die neu entwickelte Pitzer-Datenbasis von Hagemann /HAG 07/ für Pb, Zn und Cd ist für die Modellierung der in diesem Vorhaben betrachteten Reaktionen von IP21-Lösung mit verschiedenen schwermetallhaltigen Abfällen besonders wichtig. Ihre Inhalte werden deshalb im Folgenden kurz beschrieben. Anschließend folgt eine Beschreibung der verwendeten Datenbasis zur Berechnung komplexer SiAl-Systeme in salinaren Lösungen. Diese wird benötigt um Calciumsilikathydrate zu beschreiben, die
in den Abfällen vorhanden sind oder sich beim Auslaugprozess mit salinaren Lösungen bilden können.

3.3.1.3 Datenbasis für Pb in salinaren Lösungen

Mit Sulfat bildet Blei im neutralen pH-Bereich das Mineral Anglesit (PbSO₄). In Lösung treten die beiden Sulfatokomplexe [PbSO₄]₀ und [Pb(SO₄)₂]³⁻ auf. Eine kritische Dis-
kussion zu den bekannten Literaturdaten findet sich in /HER 99/ sowie /HAS 00/. Hagemann empfiehlt für Anglesit den log K von -7,84 ± 0,03. Thermodynamisch bei 25 °C stabile Bleisulfate sind nach Hagemann /HAG 07/ 3PbO·PbSO₄·H₂O und PbO·PbSO₄. Für PbO·PbSO₄ empfiehlt /HAG 07/ den log K-Wert von -27,49 und für 3PbO·PbSO₄·H₂O den log K-Wert -63,65.

Es gibt zwei Minerale, die sowohl Chlorid als auch Carbonat enthalten: das seltene Barstowit Pb₄Cl₆(CO₃)·H₂O = 3PbCl₂·PbCO₃·H₂O sowie das häufiger anzutreffende Phosgenit PbCl₂·PbCO₃. Für Phosgenit empfiehlt Hagemann für die Reaktion PbCl₂·PbCO₃ = 2Pb²⁺ + 2Cl⁻ + CO₃⁻²⁻ die Löslichkeitskonstante log K¹ = -20,64. Weiterhin ist eine Verbindung bekannt, die sowohl Carbonat als auch Sulfat enthält: Pb₄(SO₄)(CO₃)₂(OH)₂. Von dieser Verbindung sind drei Modifikationen bekannt. Hagemann leitet für die Modifikation Leadhillit einen log K-Wert von -54,9 ab.

3.3.1.4 Datenbasis für Zn in salinaren Lösungen

Hagemann /HAG 07/ hat für Zn in salinaren Lösungen ein thermodynamisches Modell entwickelt und dafür binäre, ternäre und einige höhere Systeme betrachtet. Daten liegen vor aus Untersuchungen der binären Systeme: ZnCl₂·H₂O, ZnSO₄·H₂O, Zn(ClO₄)·H₂O, Zn(NO₃)₂·H₂O, der ternären Systeme: ZnCl₂-ZnSO₄·H₂O, ZnCl₂-NaCl·H₂O, ZnCl₂-KCl·H₂O, ZnCl₂-MgCl₂·H₂O, ZnCl₂-CaCl₂·H₂O, ZnCl₂-LiCl·H₂O, ZnSO₄-Na₂SO₄·H₂O, ZnSO₄-K₂SO₄·H₂O, ZnSO₄-MgSO₄·H₂O, ZnSO₄-CaSO₄·H₂O und
einiger höherer Systeme: Na⁺,Zn²⁺||Cl⁻,SO₄²⁻–H₂O, K⁺,Zn²⁺||Cl⁻,SO₄²⁻–H₂O und K⁺,Mg²⁺,Zn²⁺||SO₄²⁻–H₂O.

Tab. 3.1 Binäre Ionenwechselwirkungskoeffizienten für Zink /HAG 07/

<table>
<thead>
<tr>
<th>Ionenpaar</th>
<th>β(1)</th>
<th>α(1)</th>
<th>β(2)</th>
<th>α(2)</th>
<th>β(2)</th>
<th>Cγ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zn²⁺ - Cl⁻</td>
<td>0,06522</td>
<td>2</td>
<td>5,5187</td>
<td>2,5</td>
<td>-4,3578</td>
<td>0,00132</td>
</tr>
<tr>
<td>Zn²⁺ - SO₄²⁻</td>
<td>0,18207</td>
<td>1,4</td>
<td>2,9430</td>
<td>20</td>
<td>-197,89</td>
<td>0,00836</td>
</tr>
<tr>
<td>Zn²⁺ - ClO₄⁻</td>
<td>0,51678</td>
<td>2</td>
<td>1,6891</td>
<td>0,00303</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zn²⁺ - NO₃⁻</td>
<td>0,32427</td>
<td>2</td>
<td>2,0233</td>
<td></td>
<td>-0,00296</td>
<td></td>
</tr>
</tbody>
</table>

Tab. 3.2 Ternäre Ionenwechselwirkungskoeffizienten für Zink /HAG 07/

<table>
<thead>
<tr>
<th>Ionenpaar</th>
<th>Ψ</th>
<th>θ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zn²⁺ - Na⁺</td>
<td>-0,12816</td>
<td></td>
</tr>
<tr>
<td>Zn²⁺ - K⁺</td>
<td>-0,31819</td>
<td></td>
</tr>
<tr>
<td>Zn²⁺ - Mg²⁺</td>
<td>-0,69247</td>
<td></td>
</tr>
<tr>
<td>Zn²⁺ - Ca²⁺</td>
<td>-0,16835</td>
<td></td>
</tr>
<tr>
<td>Zn²⁺ - Cl⁻ - SO₄²⁻</td>
<td>0,02720</td>
<td>0,02</td>
</tr>
<tr>
<td>Zn²⁺ - Na⁺ - SO₄²⁻</td>
<td>0,05260</td>
<td></td>
</tr>
<tr>
<td>Zn²⁺ - K⁺ - SO₄²⁻</td>
<td>0,08863</td>
<td></td>
</tr>
<tr>
<td>Zn²⁺ - Mg²⁺ - SO₄²⁻</td>
<td>0,22435</td>
<td></td>
</tr>
<tr>
<td>Zn²⁺ - Ca²⁺ - SO₄²⁻</td>
<td>0,07828</td>
<td></td>
</tr>
<tr>
<td>Zn²⁺ - Na⁺ - Cl⁻</td>
<td>-0,02583</td>
<td></td>
</tr>
<tr>
<td>Zn²⁺ - K⁺ - Cl⁻</td>
<td>-0,00568</td>
<td></td>
</tr>
<tr>
<td>Zn²⁺ - Mg²⁺ - Cl⁻</td>
<td>-0,02458</td>
<td></td>
</tr>
<tr>
<td>Zn²⁺ - Ca²⁺ - Cl⁻</td>
<td>-0,04623</td>
<td></td>
</tr>
</tbody>
</table>

Für wichtige Zinksulfatkomplexe gibt Hagemann Literaturdaten an /HAG 07/.
Tab. 3.3 Löslichkeitskonstanten neutraler zinkchlorid- und zinksulfathaltiger Verbindungen

<table>
<thead>
<tr>
<th>Verbindung</th>
<th>Reaktion</th>
<th>log K</th>
<th>Mineralname</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZnSO₄·7H₂O</td>
<td>ZnSO₄·7H₂O = Zn²⁺ + SO₄²⁻ + 7H₂O</td>
<td>-1,9744</td>
<td>Goslarit</td>
</tr>
<tr>
<td>ZnSO₄·6H₂O</td>
<td>ZnSO₄·6H₂O = Zn²⁺ + SO₄²⁻ + 6H₂O</td>
<td>-1,859</td>
<td>Bianchit</td>
</tr>
<tr>
<td>ZnSO₄·Na₂SO₄·4H₂O</td>
<td>ZnSO₄·Na₂SO₄·4H₂O = Zn²⁺ + 2Na⁺ + 2SO₄²⁻ + 4H₂O</td>
<td>-3,41</td>
<td></td>
</tr>
<tr>
<td>ZnSO₄·K₂SO₄·6H₂O</td>
<td>ZnSO₄·K₂SO₄·6H₂O = Zn²⁺ + 2K⁺ + 2SO₄²⁻ + 6H₂O</td>
<td>-13,7</td>
<td></td>
</tr>
</tbody>
</table>

/HAG 07/ gibt einen detaillierten Überblick über den Stand des Wissens zu folgenden Zinkverbindungen: Zinkoxid, Zink-Hydroxokomplexe, Zink-Chlorokomplexe, Zink-Sulfatokomplexe, Zink-Chloro-Sulfatokomplexe, Zink-Carbonatokomplexe.

3.3.1.5 Datenbasis für Cd in salinaren Lösungen

Auf der Basis von Literaturdaten zu binären und ternären Cd-haltigen Systemen haben Herbert und Möning /HER 96/ mit der Schaffung eines Datensatzes für Cd in salinaren Lösungen begonnen. Beschrieben haben sie die binären Systeme CdCl₂-H₂O und CdSO₄·H₂O und die ternären chloridischen Systeme NaCl-CdCl₂-H₂O, KCl-CdCl₂-H₂O, MgCl₂-CdCl₂-H₂O, CaCl₂-CdCl₂-H₂O sowie die ternären sulfatischen Systeme Na₂SO₄-CdSO₄·H₂O, K₂SO₄-CdSO₄·H₂O, MgSO₄-CdSO₄·H₂O. Der Mangel an geeigneten Daten für weitere Teilsysteme wurde dokumentiert. Weiterhin stellten sie eine ausgeprägte Tendenz von Cd zur Bildung von Chlorokomplexen fest, die ebenfalls mangels geeigneter Messdaten nicht berücksichtigt werden konnten: Dagegen konnten sie zeigen, dass eine explizite Berücksichtigung der Sulfatokomplexe bei der Modellierung nicht

Neue Daten gibt es von Hagemann /HAG 07/ für die Systeme: CdCl₂-H₂O, CdSO₄-H₂O, CdSO₄-CdCl₂-H₂O, MgCl₂-CdCl₂-H₂O, CaCl₂-CdCl₂-H₂O, Cd²⁺,Na⁺||Cl⁻,SO₄²⁻·H₂O, Cd²⁺,K⁺||Cl⁻,SO₄²⁻·H₂O und Cd²⁺,Mg²⁺||Cl⁻,SO₄²⁻·H₂O.

Für die Modellierung der Versuchsergebnisse in diesem Vorhaben wurde der oben beschriebene neue Cd-Datensatz von Hagemann /HAG 07/ verwendet.

3.3.2 Datenbasis zur Berechnung komplexer SiAl-Systeme in salinaren Lösungen

Da in der HMW-Datenbasis nur die binären und ternären Pitzerkoeffizienten für die Spezies des hexären Systems der ozeanischen Salze (K, Na, Mg, Ca, Cl und SO₄) enthalten sind, wurden zunächst die Koeffizienten für die binären Wechselwirkungen β₀, β¹, β² und C⁰ der Spezies H₃SiO₄⁻, H₂SiO₄²⁻ und Al(OH)₄⁻ mit den aus dem hexären
System bekannten Spezies in die Datenbasis implementiert (MEY 00). Es wurden für die Betrachtung gleichsinnig geladener Ionen Θ-Werte und ξ-Werte für die Betrachtung der Wechselwirkungen von Kationen, Anionen und neutralen Spezies eingefügt. Komplettiert wurde die Datenbasis durch λ- und Ψ-Werte. Eine tabellarische Auflistung dieser Wechselwirkungsparameter befindet sich in /REA 90/. Neben den Wechselwirkungskoeffizienten wurden die in verschiedenen zementhaltigen Systemen gefundenen Silikat- und Aluminatphasen in die EQ3/6-Datenbank implementiert. Zudem wurden Löslichkeitskonstanten von Zementphasen aus der Literatur in die Datenbasis aufgenommen /REA 90/, /EUR 97/, /BER 90/.

Tab. 3.4 Löslichkeitskonstanten implementierter Mineralphasen im Zementsystem

<table>
<thead>
<tr>
<th>Mineralphase</th>
<th>log K</th>
<th>Mineralphase</th>
<th>Log K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brucit</td>
<td>17,11</td>
<td>Ettringit</td>
<td>57,00</td>
</tr>
<tr>
<td>Chrysotil</td>
<td>31,13</td>
<td>Friedelsches Salz</td>
<td>70,72</td>
</tr>
<tr>
<td>C-S-H (0.8)</td>
<td>11,07</td>
<td>Quarz</td>
<td>-4,00</td>
</tr>
<tr>
<td>C-S-H (1.1)</td>
<td>16,71</td>
<td>SiO$_2$ (Amorph)</td>
<td>-2,71</td>
</tr>
<tr>
<td>C-S-H (1.7)</td>
<td>32,54</td>
<td>Hydrogarnet</td>
<td>80,80</td>
</tr>
<tr>
<td>Chabazit</td>
<td>13,21</td>
<td>Mg-Oxichlorid</td>
<td>26,03</td>
</tr>
<tr>
<td>Gibbsit</td>
<td>7,74</td>
<td>Portlandit</td>
<td>22,80</td>
</tr>
<tr>
<td>Gips</td>
<td>-4,58</td>
<td>Talk</td>
<td>22,41</td>
</tr>
</tbody>
</table>

Tab. 3.5 Löslichkeitskonstanten implementierter Tonmineralphasen

<table>
<thead>
<tr>
<th>Mineralphase</th>
<th>log K</th>
<th>Mineralphase</th>
<th>log K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albit</td>
<td>1,91</td>
<td>Montmorillonit-Na</td>
<td>1,06</td>
</tr>
<tr>
<td>Analcim</td>
<td>5,32</td>
<td>Montmorillonit-K</td>
<td>0,71</td>
</tr>
<tr>
<td>Anorthit</td>
<td>24,87</td>
<td>Montmorillonit-Ca</td>
<td>1,07</td>
</tr>
<tr>
<td>Beidellit-Na</td>
<td>3,66</td>
<td>Montmorillonit-Mg</td>
<td>0,96</td>
</tr>
<tr>
<td>Beidellit-K</td>
<td>3,32</td>
<td>Quarz</td>
<td>-3,99</td>
</tr>
<tr>
<td>Beidellit-Ca</td>
<td>3,60</td>
<td>Tobermotrit-9A</td>
<td>69,08</td>
</tr>
<tr>
<td>Beidellit-Mg</td>
<td>3,56</td>
<td>Tobermotrite11A</td>
<td>65,61</td>
</tr>
<tr>
<td>Illit</td>
<td>7,06</td>
<td>Tobermotrit-14A</td>
<td>63,84</td>
</tr>
</tbody>
</table>
3.3.3 Geochemische Modellierung mit EQ3/6

3.4 Modellierung der Reaktionen der Abfälle mit IP21-Lösung

Diese Vorgehensweise verdeutlicht, dass sowohl die Modellierung, als auch die Experimente ihren eigenen Stellenwert bei der Beurteilung des Abfallverhaltens haben und auf keine der beiden Untersuchungsmethoden verzichtet werden kann. Die Experimente zeigen eine Momentaufnahme der ablaufenden Reaktion, die kinetisch stark beeinflusst ist. Daraus eine richtige Prognose auf die Gehalte abzuleiten, die sich in der Lösung langfristig einstellen werden, ist nicht oder nur sehr ungenau möglich. Der Wert der Experimente liegt damit vorwiegend in der Überprüfung, ob die Modellierung zutreffend ist oder nicht. Zutreffend kann die Modellierung nur sein, wenn die verwendete Datenbasis geeignet, vollständig und in sich konsistent ist. Ist dies der Fall, gelingt es, mit der Modellierung die kinetisch gesteuerten Experimente nachzurechnen und aus der Gleichgewichtsmodellierung die interessierenden relevanten Langzeitwerte abzuleiten.

3.5 Praktische Vorgehensweise

Für die geochemische Modellierung wurde die analysierte Abfallzusammensetzung als „Special Reactant“ definiert. Der Ladungsausgleich wurde über Sauerstoff herbeigeführt, die analysierten Elementgehalte wurden den mittels RDA identifizierten Mineralphasen zugewiesen. Die darüber hinausgehenden Gehalte wurden hypothetischen Mineralen zugewiesen (Beispiel Tab. 6.9; mit Fettdruck sind die nachgewiesenen Mineralphasen hervorgehoben). Ein Großteil der Inhaltsstoffe der Abfälle ist röntgenamorph. Mikroskopische Untersuchungen haben einen hohen Anteil an glasigen Bestandteilen bestätigt.

Zunächst wurde eine Gleichgewichtsmodellierung durchgeführt und diese mit den Ergebnissen der LISA- und der Batch-Versuche verglichen. In allen Fällen zeigte sich, dass eine Übereinstimmung dieser Modellierung, die von instantanen Gleichgewichten ausgeht, nicht oder nur sehr grob gegeben war. Eine bessere Übereinstimmung wurde in den untersuchten Fällen meistens durch eine Anpassung der Modellierung an die Experimente erreicht. Die Anpassung wurde auf zwei Wegen herbeigeführt:

1. Anpassung der s/f-Werte der Experimente an die Ergebnisse der Modellierung
2. Anpassung der Modellierung an die in den Experimenten beobachtete Auslaugbarkeit und Unterdrückung offensichtlich nicht gebildeter Mineralphasen
4 Materialien

4.1 Feststoffe

In der nachfolgenden Tabelle sind die untersuchten Abfälle und deren Herkunft aufgeführt. Es handelt sich dabei um Filterstäube, Flugaschen und Schlacken. Es erfolgte die Charakterisierung der Abfälle bezüglich ihrer chemisch/mineralogischen Zusammensetzung sowie des Kohlenstoffanteils (Tab. 4.2). Die unterschiedlichen Feststoffe wurden mit IP21-Lösung in Kontakt gebracht, deren Zusammensetzung in gegeben ist.

Tab. 4.1 Eingesetzte Abfälle und ihre Pb/Zn/Cd-Gehalte

<table>
<thead>
<tr>
<th>Abfallbezeichnung</th>
<th>CA-Nr.</th>
<th>Herkunft/Erzeuger</th>
<th>Labor-Nr, Feststoff/Eluat</th>
<th>Menge verfügbar [kg]</th>
<th>Pb/Zn/Cd im Abfall [mg/kg]</th>
<th>Pb/Zn/Cd im Eluat [mg/kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flugasche</td>
<td>528</td>
<td>BKB Helmstedt</td>
<td>24941 25201</td>
<td>10,3</td>
<td>9018 37651 107</td>
<td>125 2485 11</td>
</tr>
<tr>
<td>Filterstaub konditioniert</td>
<td>539</td>
<td>UEV Friedrichshall</td>
<td>23257 25258</td>
<td>16,4</td>
<td>7790 25109 522</td>
<td>1068 1173 137</td>
</tr>
<tr>
<td>MVA Filterstaub konditioniert Typ 1</td>
<td>606</td>
<td>UEV Friedrichshall</td>
<td>27145 27260</td>
<td>20,5</td>
<td>7261 14486 256</td>
<td>175 52 29</td>
</tr>
<tr>
<td>MVA Schlacke, entschrottet Typ 2</td>
<td>608</td>
<td>Gesellschaft zur Entsorgung von Sondermüll in Bayern</td>
<td>27302 27260</td>
<td>57,5</td>
<td>4920 24253 45</td>
<td>141 1505 10</td>
</tr>
<tr>
<td>Braunkohlenflugasche</td>
<td>400</td>
<td>ERAM Morsleben</td>
<td>29659</td>
<td>20</td>
<td>0 2886 69</td>
<td></td>
</tr>
</tbody>
</table>
Tab. 4.2 Chemische Zusammensetzung der Abfälle in [mg/kg]

<table>
<thead>
<tr>
<th>Labor-Nr.</th>
<th>CA528</th>
<th>CA539</th>
<th>CA606</th>
<th>CA608</th>
<th>CA400</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcium</td>
<td>112578</td>
<td>137575</td>
<td>263137</td>
<td>156379</td>
<td>167250</td>
</tr>
<tr>
<td>Kalium</td>
<td>12347</td>
<td>58935</td>
<td>20063</td>
<td>31665</td>
<td>7309,5</td>
</tr>
<tr>
<td>Magnesium</td>
<td>14393</td>
<td>17215</td>
<td>7925</td>
<td>10672</td>
<td>16290</td>
</tr>
<tr>
<td>Natrium</td>
<td>20051</td>
<td>44434</td>
<td>30465</td>
<td>48299</td>
<td>8179</td>
</tr>
<tr>
<td>Schwefel</td>
<td>34043</td>
<td>38108</td>
<td>32667</td>
<td>12147</td>
<td>21902</td>
</tr>
<tr>
<td>Sulfat berechnet aus S</td>
<td>101999</td>
<td>114178</td>
<td>97876</td>
<td>36394</td>
<td>65615</td>
</tr>
<tr>
<td>Chlorid</td>
<td>6193</td>
<td>87300</td>
<td>212021</td>
<td>14796</td>
<td>3117</td>
</tr>
<tr>
<td>Aluminium</td>
<td>18276</td>
<td>9161</td>
<td>21219</td>
<td>22900</td>
<td>113950</td>
</tr>
<tr>
<td>Arsen</td>
<td>n. b.</td>
<td>n. b.</td>
<td>n. b.</td>
<td>n. b.</td>
<td>142,8</td>
</tr>
<tr>
<td>Barium</td>
<td>1137</td>
<td>522</td>
<td>357</td>
<td>639</td>
<td>1132,65</td>
</tr>
<tr>
<td>Bismut</td>
<td>241</td>
<td>556</td>
<td>139</td>
<td>1604</td>
<td>5,80</td>
</tr>
<tr>
<td>Blei</td>
<td>9018</td>
<td>7790</td>
<td>7261</td>
<td>4920</td>
<td>n. b.</td>
</tr>
<tr>
<td>Bor</td>
<td>1137</td>
<td>n. b.</td>
<td>335</td>
<td>639</td>
<td>142,8</td>
</tr>
<tr>
<td>Cadmium</td>
<td>107</td>
<td>522</td>
<td>256</td>
<td>45</td>
<td>68,94</td>
</tr>
<tr>
<td>Chrom</td>
<td>914</td>
<td>n. b.</td>
<td>3575</td>
<td>2037</td>
<td>98,08</td>
</tr>
<tr>
<td>Cobalt</td>
<td>241</td>
<td>556</td>
<td>139</td>
<td>1604</td>
<td>103</td>
</tr>
<tr>
<td>Eisen</td>
<td>111812</td>
<td>17823</td>
<td>13041</td>
<td>57609</td>
<td>30635</td>
</tr>
<tr>
<td>Kupfer</td>
<td>3620</td>
<td>1056</td>
<td>1744</td>
<td>1734</td>
<td>543,35</td>
</tr>
<tr>
<td>Mangan</td>
<td>1489</td>
<td>1577</td>
<td>814</td>
<td>1378</td>
<td>1061</td>
</tr>
<tr>
<td>Molybdän</td>
<td>700</td>
<td>n. b.</td>
<td><271</td>
<td>1413</td>
<td>103</td>
</tr>
<tr>
<td>Nickel</td>
<td>85836</td>
<td>56504</td>
<td>8271</td>
<td>35350</td>
<td>254,45</td>
</tr>
<tr>
<td>Quecksilber</td>
<td>n. b.</td>
<td>n. a.</td>
<td><0,9</td>
<td><0,76</td>
<td>254,45</td>
</tr>
<tr>
<td>Silicium</td>
<td>10785</td>
<td>9377</td>
<td>8540</td>
<td>13540</td>
<td>13025</td>
</tr>
<tr>
<td>Strontium</td>
<td>37651</td>
<td>25109</td>
<td>14486</td>
<td>24253</td>
<td>1443</td>
</tr>
<tr>
<td>Thallium</td>
<td>1777</td>
<td>1777</td>
<td>1777</td>
<td>1777</td>
<td>62,81</td>
</tr>
<tr>
<td>Titan</td>
<td>2070,5</td>
<td>40,69</td>
<td>2070,5</td>
<td>40,69</td>
<td>2070,5</td>
</tr>
<tr>
<td>Vanadium</td>
<td>1875</td>
<td>1875</td>
<td>1875</td>
<td>1875</td>
<td>62,81</td>
</tr>
<tr>
<td>Zink</td>
<td>1875</td>
<td>1875</td>
<td>1875</td>
<td>1875</td>
<td>62,81</td>
</tr>
<tr>
<td>Zinn</td>
<td>1875</td>
<td>1875</td>
<td>1875</td>
<td>1875</td>
<td>62,81</td>
</tr>
<tr>
<td>Zirkonium</td>
<td>1875</td>
<td>1875</td>
<td>1875</td>
<td>1875</td>
<td>62,81</td>
</tr>
</tbody>
</table>

TIC	0,19 %	0,71 %	0,31 %	n. a.
TOC	0,18 %	0,30 %	0,04 %	n. a.
TC	0,39 %	1,00 %	0,75 %	n. a.

<table>
<thead>
<tr>
<th>Mineral 1</th>
<th>Quarz</th>
<th>Halit</th>
<th>Calciumchlorid-Hydroxid</th>
<th>Anhydrit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mineral 2</td>
<td>Anhydrit</td>
<td>Sylv</td>
<td>Calciumchlorid-Hydroxid</td>
<td>Anhydrit</td>
</tr>
<tr>
<td>Mineral 3</td>
<td>Magnetit</td>
<td>Quarz</td>
<td>Hydroxyl-fluorapatit</td>
<td></td>
</tr>
<tr>
<td>Mineral 4</td>
<td>Hämattit</td>
<td>Anhydrit</td>
<td>Hydroxyl-fluorapatit</td>
<td></td>
</tr>
<tr>
<td>Mineral 5</td>
<td>Grafit</td>
<td>Calcit</td>
<td>Hydroxyl-fluorapatit</td>
<td></td>
</tr>
<tr>
<td>Mineral 6</td>
<td>Diopsit</td>
<td>Calcit</td>
<td>Hydroxyl-fluorapatit</td>
<td></td>
</tr>
</tbody>
</table>

| Trockenverlust | Königswasser unlöschlicher Rückstand | 2310 | <100 | 2808 | <100 |
4.2 Lösungen

Für die Versuche wurde IP21-Lösung eingesetzt, eine Salzlösung, die im Gleichgewicht steht mit den Bodenkörpern Halit (NaCl), Sylvin (KCl), Carnallit (K\textsubscript{2}Mg\textsubscript{2}Cl\textsubscript{6} \cdot 6\textsubscript{H_2}O), Kainit (K\textsubscript{2}Mg\textsubscript{2}Cl\textsubscript{3} \cdot 3\textsubscript{H_2}O) und Polyhalit (K\textsubscript{2}MgCa\textsubscript{2}SO\textsubscript{4} \cdot 2\textsubscript{H_2}O). Sie entsteht, wenn eine NaCl-Lösung in Kalilager eindringt. Die IP21-Lösung ist eine repräsentative Störfallösung, weil in den zurzeit im Betrieb befindlichen Untertagedeponien in der Regel Kalilager aufgeschlossen sind.

Die Lösung (Tab. 4.3) wurde gemäß der im Geochemischen Labor der GRS entwickelten „Standard Operation Procedure“ (SOP 7: Herstellung einer künstlichen IP21-Lösung) hergestellt und analysiert. Die geringfügigen Abweichungen der berechneten Sättigungen (Affinitäten, Tab. 4.4) vom Idealwert 0 liegen im üblichen Rahmen.

Tab. 4.3 Verwendete Ausgangslösung und ihre Zusammensetzung

<table>
<thead>
<tr>
<th>Ausgangslösung IP21 vom 18.11.04</th>
<th>[mg/l]</th>
<th>[mol/kg\textsubscript{Wasser}]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Labor-Nr.</td>
<td>29196</td>
<td></td>
</tr>
<tr>
<td>Dichte [g/cm3]</td>
<td>1,2887</td>
<td></td>
</tr>
<tr>
<td>Natrium</td>
<td>9200</td>
<td>0,46286</td>
</tr>
<tr>
<td>Kalium</td>
<td>20643</td>
<td>0,61068</td>
</tr>
<tr>
<td>Calcium</td>
<td>31</td>
<td>9,01 \cdot 10^{-4}</td>
</tr>
<tr>
<td>Magnesium</td>
<td>87125</td>
<td>4,14616</td>
</tr>
<tr>
<td>Chlorid</td>
<td>275711</td>
<td>8,99504</td>
</tr>
<tr>
<td>Sulfat</td>
<td>23555</td>
<td>0,42571</td>
</tr>
</tbody>
</table>

Tab. 4.4 Aus dem Analysergebnis mit EQ3 berechnete Mineralsättigungen

<table>
<thead>
<tr>
<th>Mineral</th>
<th>Chemische Formel</th>
<th>Affinität [kcal]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Halit</td>
<td>NaCl</td>
<td>-0,06469</td>
</tr>
<tr>
<td>Sylvin</td>
<td>KCl</td>
<td>0,00000</td>
</tr>
<tr>
<td>Carnallit</td>
<td>KMgCl\textsubscript{3} \cdot 6\textsubscript{H_2}O</td>
<td>-0,07556</td>
</tr>
<tr>
<td>Kainit</td>
<td>KMgCl\textsubscript{3}SO\textsubscript{4} \cdot 3\textsubscript{H_2}O</td>
<td>-0,10346</td>
</tr>
<tr>
<td>Polyhalit</td>
<td>K\textsubscript{2}MgCa\textsubscript{2}(SO\textsubscript{4})\textsubscript{4} \cdot 2\textsubscript{H_2}O</td>
<td>0,00000</td>
</tr>
</tbody>
</table>
5 Durchgeführte Arbeiten

Das Arbeitsprogramm gliederte sich in drei Arbeitspakete mit experimentellen Arbeits-
schritten und geochemischer Modellierung.

5.1 AP 1 - Schadstoffmobilisierung unter Normalbedingungen

In einem umfangreichen Laborprogramm wurden verschiedene methodische Vorge-
hensweisen zur Gewinnung und Untersuchung von Eluaten aus festen Matrices im
Hinblick auf deren Eignung für die Prognose des Langzeitverhaltens des Abfalls bzw.
Reststoffs in untertägigen Entsorgungseinrichtungen /MOE 00/ systematisch unter-
sucht. Die Vor- und Nachteile der verschiedenen methodischen Ansätze, wie ein- bzw.
mehrstufige Batch-Extraktionsverfahren, Säulen- und Kaskadenversuche, wurden ver-
gleichend bewertet und auf dieser Basis wurde eine Vorgehensweise zur Abschätzung
des Langzeitverhaltens von Abfällen bei der untertägigen Entsorgung vorgeschlagen.
Nach der Bestimmung von elementspezifischen Auslaufgraten mit einer UTD-
relevanten Salzlösungen sollen geochemische Modellrechnungen zur Ermittlung der
Lösungsentwicklung bis hin zu relevanten Feststoff-Lösungsverhältnissen durchgeführt
werden und anschließend eine gezielte Überprüfung der Modellvorhersagen mit Hilfe
von Langzeitversuchen erfolgen.

5.1.1 AS 1.1 - Experimentelle Untersuchungen zur Schadstoffmobilisierung

In diesem Arbeitspaket wurde das Auslaugverhalten von vier Abfällen experimentell
untersucht. Dazu wurden UTD-relevante Massenabfälle herangezogen, die insbeson-
dere die Schwermetalle Cd, Pb und Zn enthalten und diese auch in einem nennens-
werten Ausmaß freisetzen. Zur Identifizierung solcher Abfälle wurde auf den Datenpool
in der Datenbank AMANDA /MOE 02/ zurückgegriffen. Die entsprechenden Abfälle
wurden in den erforderlichen Mengen beschafft und charakterisiert.

Bei den experimentellen Untersuchungen wurden statische Versuche (s/f konstant) und
dynamische Versuche (s/f verändert sich mit der Zeit) eingesetzt. Die Vorgehensweise
basiert prinzipiell auf den Empfehlungen für realitätsnahe Untersuchungen in
/MOE 00/:
• In Batch-Versuchen wurden mit IP21-Lösung jeweils bei vier unterschiedlichen Feststoff-Lösungsverhältnissen elementspezifische Auslaugraten für die betrachteten Schwermetalle bestimmt. Außerdem wurden die wichtigsten Mineralphasen, die das Löslichkeitsverhalten steuern, identifiziert und analytisch nachgewiesen.

5.1.1.1 Vorversuche zur Methodenentwicklung

Ein erster Versuch mit der Bezeichnung LISA1, vor Beginn der eigentlichen Auslaugversuche, diente der Geräteentwicklung für die ELISA-Auslaugversuche. Im Folgenden wird für diese Versuche die Kurzbezeichnung LISA verwendet.

5.1.1.2 Auslaugversuche mit vier Abfällen

Für den geplanten Methodenvergleich von LISA-Auslaugversuchen mit veränderlichem Feststoff-Lösungsverhältnis und Batch-Versuchen mit konstantem Verhältnis wurden mit vier verschiedenen Abfällen und IP21-Lösung nach beiden Methoden Versuche durchgeführt. Folgende Versuchsreihen liegen vor:

• LISA2 und BATCH2, Abfall CA528+IP21-Lösung
• LISA3 und BATCH3, Abfall CA539+IP21-Lösung
• LISA4 und BATCH3, Abfall CA606+IP21-Lösung
• LISA5 und BATCH3, Abfall CA608+IP21-Lösung.
Für die Lisa-Versuche wurde die Messzelle Abb. 3.3 mit dem Abfall gefüllt und danach Lösung dazugegeben. Die Lösungsmenge wurde in Vorversuchen so ermittelt, dass das Gemenge gerade noch fließfähig war. Die Zelle wurde mit der Hand einmal am Tag gedreht. Die Probennahme erfolgte einmal pro Woche durch Auspressen eines Lösungsvolumens, das groß genug war für die Messungen von Dichte, pH-Wert und Lösungsanalytik.

5.1.2 AS 1.2 - Geochemische Modellrechnungen zur Schadstofffreisetzung

5.2 AP 2 - Entwicklung von Strategien zur Minimierung des Quellterms

Auf Basis der im AP 1 ermittelten Schwermetallfreisetzungen wurden mögliche Vorgehensweisen zur Minimierung des Quellterms untersucht. Dabei wurden unterschiedliche Ansätze betrachtet. So kann durch Zugabe geeigneter Stoffe (wie Braun-
kohlenflugaschen, Kalk, Zement o.ä.) das geochemische Milieu gezielt beeinflusst werden, so dass die Löslichkeit des Schwermetalls reduziert wird. Auch können die Schadstoffe in Mineralphasen mit besonders niedrigem Löslichkeitsprodukt gebunden werden. Löslichkeitsdaten von für die Metallfixierung in Frage kommenden Mineralphasen wurden der Literatur entnommen und überprüft /HAG 07/.

Die Bewertung der verschiedenen Möglichkeiten erfolgte auf der Basis von geochemischen Modellrechnungen für die bei der untertägigen Deponierung herrschenden Randbedingungen. Dabei wurden die geochemischen Modelle eingesetzt, deren Anwendbarkeit im AP 1 anhand experimenteller Daten gezeigt wurde.

5.3 AP 3 - Überprüfung der verringerten Schadstoffmobilisierung

5.3.1 Versuche zur Quantifizierung des pH-Einflusses auf die Schwermetallmobilisierung

5.3.2 Versuche zur Reduzierung der Schwermetallmobilisierung durch Mischen von Abfällen

Eine deutliche Reduzierung der Schwermetallgehalte in Lösung kann in einer Untertage deponie durch die Einstellung höherer pH-Werte durch die Mischung geeigneter Abfälle erreicht werden. Durch die Mischung der in den LISA-Versuchen verwendeten vier Abfälle ließ sich keine große Variation des pH-Werte erreichen. Entsprechend war der Effekt der Schwermetallreduzierung durch Mischung dieser Abfälle miteinander nicht groß. Es wurde deshalb ein weiterer Abfall, eine Braunkohlenfilterasche CA400 mit hohem CaO-Gehalt ins Untersuchungsprogramm aufgenommen. Die beiden zu mischenden Abfälle CA528 und CA400 wurden zunächst in Batchversuchen mit einem
6 Ergebnisse

6.1 Reaktion der Flugasche CA528 mit IP21-Lösung

6.1.1 CA528 - Lisa-Versuche

Der LISA-Versuch mit CA528 und IP21-Lösung (LISA2) ist 105 Tage gelaufen. In regelmäßigen Abständen von jeweils 7 Tagen (Tab. 6.1) wurde eine Probe genommen und analysiert, zusammen 15 Proben. Die Ergebnisse der Lösungsanalysen sind in Tab. 6.2 dargestellt. Um die experimentellen Werte mit den Ergebnissen der geochemischen Modellierung vergleichen zu können, wurden alle Elementgehalte in mol/kg Wasser angegeben. Die ELISA-Zelle (Abb. 3.3) enthält an ihrem unteren Ende eine Filterplatte, die verhindern soll, dass ungelöste Bestandteile des Abfalls in die Lösungsprobe gelangen, und danach ein Absperrventil. Da die in diesem Bereich befindliche Lösung (ca. 3 ml) an der Rektion mit dem Abfall praktisch nicht mehr teilnehmen konnte, wurde vor der eigentlichen Probennahme ein „Todvolumen“ entnommen und verworfen (Tab. 6.3). In Tab. 6.4 bis Tab. 6.6 ist der bei der jeweiligen Probennahme entnommene Anteil der Schwermetalle (bezogen auf ein kg Abfall) und der bis dahin insgesamt entnommene Anteil aufgeführt. Außerdem ist das Verhältnis von ungelöstem zu gelöstem Schwermetall angegeben.
Tab. 6.1 Experimentelle Ergebnisse des LISA-Versuchs zur Reaktion der Flugasche CA528 mit IP21-Lösung [Teil 1]

<table>
<thead>
<tr>
<th>Labor-Nr.</th>
<th>Probenbezeichnung</th>
<th>Zeit [d]</th>
<th>s / f [kg/kg]</th>
<th>Dichte [g/cm³]</th>
<th>pH</th>
<th>Temp. [°C]</th>
</tr>
</thead>
<tbody>
<tr>
<td>29136</td>
<td>CA528 + IP21 7 Tage</td>
<td>7</td>
<td>0,908</td>
<td>1,2924</td>
<td>6,02</td>
<td>25,6</td>
</tr>
<tr>
<td>29137</td>
<td>CA528 + IP21 14 Tage</td>
<td>14</td>
<td>0,950</td>
<td>1,2874</td>
<td>5,99</td>
<td>27,0</td>
</tr>
<tr>
<td>29138</td>
<td>CA528 + IP21 21 Tage</td>
<td>21</td>
<td>0,977</td>
<td>1,2831</td>
<td>6,10</td>
<td>23,7</td>
</tr>
<tr>
<td>29139</td>
<td>CA528 + IP21 28 Tage</td>
<td>28</td>
<td>1,008</td>
<td>1,2810</td>
<td>6,09</td>
<td>23,8</td>
</tr>
<tr>
<td>29140</td>
<td>CA528 + IP21 35 Tage</td>
<td>35</td>
<td>1,047</td>
<td>1,2792</td>
<td>5,99</td>
<td>25,4</td>
</tr>
<tr>
<td>29141</td>
<td>CA528 + IP21 42 Tage</td>
<td>42</td>
<td>1,079</td>
<td>1,2770</td>
<td>5,94</td>
<td>24,9</td>
</tr>
<tr>
<td>29142</td>
<td>CA528 + IP21 49 Tage</td>
<td>49</td>
<td>1,116</td>
<td>1,2766</td>
<td>5,86</td>
<td>27,3</td>
</tr>
<tr>
<td>29143</td>
<td>CA528 + IP21 56 Tage</td>
<td>56</td>
<td>1,153</td>
<td>1,2755</td>
<td>6,01</td>
<td>25,1</td>
</tr>
<tr>
<td>29144</td>
<td>CA528 + IP21 63 Tage</td>
<td>63</td>
<td>1,196</td>
<td>1,2745</td>
<td>5,90</td>
<td>25,8</td>
</tr>
<tr>
<td>29145</td>
<td>CA528 + IP21 70 Tage</td>
<td>70</td>
<td>1,239</td>
<td>1,2737</td>
<td>5,84</td>
<td>27,2</td>
</tr>
<tr>
<td>29146</td>
<td>CA528 + IP21 77 Tage</td>
<td>77</td>
<td>1,287</td>
<td>1,2736</td>
<td>5,91</td>
<td>28,9</td>
</tr>
<tr>
<td>29147</td>
<td>CA528 + IP21 84 Tage</td>
<td>84</td>
<td>1,339</td>
<td>1,2727</td>
<td>5,87</td>
<td>23,0</td>
</tr>
<tr>
<td>29148</td>
<td>CA528 + IP21 91 Tage</td>
<td>91</td>
<td>1,393</td>
<td>1,2720</td>
<td>5,86</td>
<td>27,3</td>
</tr>
<tr>
<td>29149</td>
<td>CA528 + IP21 98 Tage</td>
<td>98</td>
<td>1,451</td>
<td>1,2720</td>
<td>5,82</td>
<td>24,8</td>
</tr>
<tr>
<td>29150</td>
<td>CA528 + IP21 105 Tage</td>
<td>105</td>
<td>1,516</td>
<td>1,2716</td>
<td>5,70</td>
<td>25,0</td>
</tr>
</tbody>
</table>

Tab. 6.2 Experimentelle Ergebnisse des LISA-Versuchs zur Reaktion der Flugasche CA528 mit IP21-Lösung [Teil 2]

<table>
<thead>
<tr>
<th>Labor-Nr.</th>
<th>[mol/kg H₂O]</th>
<th>Cd</th>
<th>Pb</th>
<th>Zn</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Na</td>
<td>K</td>
<td>Ca</td>
<td>Mg</td>
</tr>
<tr>
<td>29136</td>
<td>0,679</td>
<td>0,779</td>
<td>0,004</td>
<td>3,897</td>
</tr>
<tr>
<td>29137</td>
<td>0,665</td>
<td>0,750</td>
<td>0,004</td>
<td>3,782</td>
</tr>
<tr>
<td>29138</td>
<td>0,632</td>
<td>0,724</td>
<td>0,005</td>
<td>3,913</td>
</tr>
<tr>
<td>29139</td>
<td>0,640</td>
<td>0,720</td>
<td>0,005</td>
<td>3,818</td>
</tr>
<tr>
<td>29140</td>
<td>0,664</td>
<td>0,739</td>
<td>0,006</td>
<td>3,728</td>
</tr>
<tr>
<td>29141</td>
<td>0,670</td>
<td>0,716</td>
<td>0,009</td>
<td>3,669</td>
</tr>
<tr>
<td>29142</td>
<td>0,674</td>
<td>0,741</td>
<td>0,009</td>
<td>3,665</td>
</tr>
<tr>
<td>29143</td>
<td>0,711</td>
<td>0,769</td>
<td>0,010</td>
<td>3,627</td>
</tr>
<tr>
<td>29144</td>
<td>0,707</td>
<td>0,775</td>
<td>0,011</td>
<td>3,599</td>
</tr>
<tr>
<td>29145</td>
<td>0,663</td>
<td>0,726</td>
<td>0,013</td>
<td>3,383</td>
</tr>
<tr>
<td>29146</td>
<td>0,663</td>
<td>0,732</td>
<td>0,015</td>
<td>3,324</td>
</tr>
<tr>
<td>29147</td>
<td>0,714</td>
<td>0,778</td>
<td>0,017</td>
<td>3,545</td>
</tr>
<tr>
<td>29148</td>
<td>0,715</td>
<td>0,767</td>
<td>0,018</td>
<td>3,543</td>
</tr>
<tr>
<td>29149</td>
<td>0,714</td>
<td>0,773</td>
<td>0,019</td>
<td>3,512</td>
</tr>
<tr>
<td>29150</td>
<td>0,720</td>
<td>0,777</td>
<td>0,021</td>
<td>3,506</td>
</tr>
</tbody>
</table>
Tab. 6.3 Experimentelle Ergebnisse des LISA-Versuchs zur Reaktion der Flugasche CA528 mit IP21-Lösung [Teil 3]

<table>
<thead>
<tr>
<th>Labor-Nr.</th>
<th>Todvolumen [g]</th>
<th>Probe [g]</th>
<th>Todvolumen [cm³]</th>
<th>Probe [cm³]</th>
<th>Σ Volumen [cm³]</th>
<th>Feststoff [g]</th>
<th>Lösung [cm³]</th>
<th>s / f [g/cm³]</th>
</tr>
</thead>
<tbody>
<tr>
<td>29136</td>
<td>10,2</td>
<td>6,6</td>
<td>7,9</td>
<td>5,1</td>
<td>12,9</td>
<td>350,0</td>
<td>285,0</td>
<td>1,2</td>
</tr>
<tr>
<td>29137</td>
<td>5,2</td>
<td>5,2</td>
<td>4,0</td>
<td>4,0</td>
<td>8,1</td>
<td>350,0</td>
<td>276,9</td>
<td>1,3</td>
</tr>
<tr>
<td>29138</td>
<td>8,6</td>
<td>2,3</td>
<td>6,7</td>
<td>1,8</td>
<td>8,5</td>
<td>350,0</td>
<td>268,4</td>
<td>1,3</td>
</tr>
<tr>
<td>29139</td>
<td>6,5</td>
<td>6,3</td>
<td>5,1</td>
<td>4,9</td>
<td>10,0</td>
<td>350,0</td>
<td>258,4</td>
<td>1,4</td>
</tr>
<tr>
<td>29140</td>
<td>4,8</td>
<td>5,3</td>
<td>3,7</td>
<td>4,1</td>
<td>7,8</td>
<td>350,0</td>
<td>250,6</td>
<td>1,4</td>
</tr>
<tr>
<td>29141</td>
<td>5,7</td>
<td>5,3</td>
<td>4,5</td>
<td>4,1</td>
<td>8,6</td>
<td>350,0</td>
<td>242,0</td>
<td>1,4</td>
</tr>
<tr>
<td>29142</td>
<td>5,1</td>
<td>4,9</td>
<td>4,0</td>
<td>3,9</td>
<td>7,8</td>
<td>350,0</td>
<td>234,2</td>
<td>1,5</td>
</tr>
<tr>
<td>29143</td>
<td>5,5</td>
<td>5,4</td>
<td>4,3</td>
<td>4,2</td>
<td>8,5</td>
<td>350,0</td>
<td>225,7</td>
<td>1,6</td>
</tr>
<tr>
<td>29144</td>
<td>5,2</td>
<td>5,0</td>
<td>4,1</td>
<td>4,0</td>
<td>8,0</td>
<td>350,0</td>
<td>217,6</td>
<td>1,6</td>
</tr>
<tr>
<td>29145</td>
<td>5,2</td>
<td>5,2</td>
<td>4,1</td>
<td>4,1</td>
<td>8,2</td>
<td>350,0</td>
<td>209,5</td>
<td>1,7</td>
</tr>
<tr>
<td>29146</td>
<td>5,2</td>
<td>5,5</td>
<td>4,1</td>
<td>4,3</td>
<td>8,4</td>
<td>350,0</td>
<td>201,2</td>
<td>1,7</td>
</tr>
<tr>
<td>29147</td>
<td>5,2</td>
<td>5,0</td>
<td>4,1</td>
<td>3,9</td>
<td>7,9</td>
<td>350,0</td>
<td>193,2</td>
<td>1,8</td>
</tr>
<tr>
<td>29148</td>
<td>5,1</td>
<td>5,0</td>
<td>4,0</td>
<td>3,9</td>
<td>7,9</td>
<td>350,0</td>
<td>185,2</td>
<td>1,9</td>
</tr>
<tr>
<td>29149</td>
<td>5,1</td>
<td>5,2</td>
<td>4,0</td>
<td>4,1</td>
<td>8,1</td>
<td>350,0</td>
<td>177,2</td>
<td>2,0</td>
</tr>
<tr>
<td>29150</td>
<td>5,1</td>
<td>5,2</td>
<td>4,1</td>
<td>4,1</td>
<td>8,2</td>
<td>350,0</td>
<td>169,1</td>
<td>2,1</td>
</tr>
</tbody>
</table>

Tab. 6.4 Experimentelle Ergebnisse des LISA-Versuchs zur Reaktion der Flugasche CA528 mit IP21-Lösung [Teil 4]

<table>
<thead>
<tr>
<th>Labor-Nr.</th>
<th>Austrag Zn [mg/kg]</th>
<th>Σ Austrag Zn [mg/kg]</th>
<th>c(s) / c(f) für Zn [mg/kg]/[mg/kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>29136</td>
<td>119,1</td>
<td>119,1</td>
<td>13,0</td>
</tr>
<tr>
<td>29137</td>
<td>65,7</td>
<td>184,9</td>
<td>14,7</td>
</tr>
<tr>
<td>29138</td>
<td>63,0</td>
<td>247,9</td>
<td>16,2</td>
</tr>
<tr>
<td>29139</td>
<td>76,5</td>
<td>324,4</td>
<td>15,6</td>
</tr>
<tr>
<td>29140</td>
<td>63,0</td>
<td>387,4</td>
<td>14,8</td>
</tr>
<tr>
<td>29141</td>
<td>69,0</td>
<td>456,3</td>
<td>14,8</td>
</tr>
<tr>
<td>29142</td>
<td>64,2</td>
<td>520,5</td>
<td>14,5</td>
</tr>
<tr>
<td>29143</td>
<td>71,4</td>
<td>591,9</td>
<td>14,1</td>
</tr>
<tr>
<td>29144</td>
<td>- - -</td>
<td>591,9</td>
<td>- - -</td>
</tr>
<tr>
<td>29145</td>
<td>- - -</td>
<td>591,9</td>
<td>- - -</td>
</tr>
<tr>
<td>29146</td>
<td>- - -</td>
<td>591,9</td>
<td>- - -</td>
</tr>
<tr>
<td>29147</td>
<td>66,8</td>
<td>658,8</td>
<td>14,0</td>
</tr>
<tr>
<td>29148</td>
<td>67,2</td>
<td>726,0</td>
<td>14,0</td>
</tr>
<tr>
<td>29149</td>
<td>70,3</td>
<td>796,3</td>
<td>13,5</td>
</tr>
<tr>
<td>29150</td>
<td>70,5</td>
<td>866,8</td>
<td>13,5</td>
</tr>
</tbody>
</table>
Tab. 6.5 Experimentelle Ergebnisse des LISA-Versuchs zur Reaktion der Flugasche CA528 mit IP21-Lösung [Teil 5]

<table>
<thead>
<tr>
<th>Labor-Nr.</th>
<th>Austrag Pb [mg/kg]</th>
<th>Σ Austrag Pb [mg/kg]</th>
<th>c(s) / c(f) für Pb [mg/kg]/[mg/kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>29136</td>
<td>6,67</td>
<td>6,67</td>
<td>55,7</td>
</tr>
<tr>
<td>29137</td>
<td>2,63</td>
<td>9,30</td>
<td>88,4</td>
</tr>
<tr>
<td>29138</td>
<td>1,72</td>
<td>11,02</td>
<td>142,7</td>
</tr>
<tr>
<td>29139</td>
<td>0,87</td>
<td>11,90</td>
<td>329,2</td>
</tr>
<tr>
<td>29140</td>
<td>0,67</td>
<td>12,56</td>
<td>338,6</td>
</tr>
<tr>
<td>29141</td>
<td>0,59</td>
<td>13,16</td>
<td>415,3</td>
</tr>
<tr>
<td>29142</td>
<td>0,56</td>
<td>13,71</td>
<td>406,1</td>
</tr>
<tr>
<td>29143</td>
<td>0,75</td>
<td>14,47</td>
<td>325,1</td>
</tr>
<tr>
<td>29144</td>
<td>0,51</td>
<td>14,98</td>
<td>450,3</td>
</tr>
<tr>
<td>29145</td>
<td>0,35</td>
<td>15,33</td>
<td>672,2</td>
</tr>
<tr>
<td>29146</td>
<td>0,52</td>
<td>15,85</td>
<td>463,3</td>
</tr>
<tr>
<td>29147</td>
<td>0,39</td>
<td>16,24</td>
<td>591,5</td>
</tr>
<tr>
<td>29148</td>
<td>0,48</td>
<td>16,72</td>
<td>477,3</td>
</tr>
<tr>
<td>29149</td>
<td>0,38</td>
<td>17,10</td>
<td>609,9</td>
</tr>
<tr>
<td>29150</td>
<td>0,47</td>
<td>17,57</td>
<td>497,3</td>
</tr>
</tbody>
</table>

Tab. 6.6 Experimentelle Ergebnisse des LISA-Versuchs zur Reaktion der Flugasche CA528 mit IP21-Lösung [Teil 6]

<table>
<thead>
<tr>
<th>Labor-Nr.</th>
<th>Austrag Cd [mg/kg]</th>
<th>Σ Austrag Cd [mg/kg]</th>
<th>c(s) / c(f) für Cd [mg/kg]/[mg/kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>29136</td>
<td>1,48</td>
<td>1,48</td>
<td>2,99</td>
</tr>
<tr>
<td>29137</td>
<td>0,79</td>
<td>2,27</td>
<td>3,44</td>
</tr>
<tr>
<td>29138</td>
<td>0,70</td>
<td>2,97</td>
<td>4,05</td>
</tr>
<tr>
<td>29139</td>
<td>0,77</td>
<td>3,74</td>
<td>4,31</td>
</tr>
<tr>
<td>29140</td>
<td>0,69</td>
<td>4,43</td>
<td>3,76</td>
</tr>
<tr>
<td>29141</td>
<td>0,72</td>
<td>5,15</td>
<td>3,91</td>
</tr>
<tr>
<td>29142</td>
<td>0,64</td>
<td>5,79</td>
<td>3,97</td>
</tr>
<tr>
<td>29143</td>
<td>0,68</td>
<td>6,47</td>
<td>4,04</td>
</tr>
<tr>
<td>29144</td>
<td>0,64</td>
<td>7,11</td>
<td>4,04</td>
</tr>
<tr>
<td>29145</td>
<td>0,63</td>
<td>7,74</td>
<td>4,16</td>
</tr>
<tr>
<td>29146</td>
<td>0,65</td>
<td>8,39</td>
<td>4,14</td>
</tr>
<tr>
<td>29147</td>
<td>0,66</td>
<td>9,05</td>
<td>3,77</td>
</tr>
<tr>
<td>29148</td>
<td>0,60</td>
<td>9,65</td>
<td>4,15</td>
</tr>
<tr>
<td>29149</td>
<td>0,62</td>
<td>10,27</td>
<td>4,07</td>
</tr>
<tr>
<td>29150</td>
<td>0,61</td>
<td>10,88</td>
<td>4,11</td>
</tr>
</tbody>
</table>

\[
\text{CaCO}_3 \rightarrow \text{CaO} + \text{CO}_2 \quad \text{Reaktion 1}
\]

\[
\text{CaO} + \text{H}_2\text{O} \rightarrow \text{Ca(OH)}_2 \quad \text{Reaktion 2}
\]

Das so in die Lösung gelangte Ca\(^{2+}\) wird mit dem Sulfat aus der Lösung sofort wieder als Gips ausgeschieden (Reaktion 3).

\[
\text{Ca}^{2+} + \text{SO}_4^{2-} + \text{H}_2\text{O} \rightarrow \text{CaSO}_4\cdot2\text{H}_2\text{O} \quad \text{Reaktion 3}
\]

Abb. 6.2 zeigt die Entwicklung des s/f-Verhältnisses über die Zeit, das sich durch die sukzessiven Probennahmen ständig vergrößerte. Das s/f-Verhältnis in kg/kg H\(_2\)O in Lösung entspricht dem z\(_i\) in der Modellierung für den Fall eines vollständigen Gleichgewichts und eines konstanten Wassergehalts in der Lösung. Davon kann jedoch in den Experimenten nicht ausgegangen werden.

Abb. 6.3 zeigt die Entwicklung der Dichte der Lösung und der Wassergehalte in Lösung mit fortschreitender Reaktionszeit. In Abb. 6.4 sind die Haupelementgehalte und
in Abb. 6.5 die pH-Werte in Lösung dargestellt, Abb. 6.6 zeigt die Schwermetallgehalte Pb, Zn und Cd in Lösung und Abb. 6.7 den kumulierten Austrag von Schwermetallen aus dem Abfall. Die Auslaugbarkeit von Schwermetallen in IP21-Lösung ist für jedes Schwermetall unterschiedlich, Abb. 6.8 verdeutlicht diese Unterschiede.

Abb. 6.1 Kumulierter relativer Lösungsauszug aus dem LISA-Versuch infolge wiederholter Probennahme; Bild oben: Darstellung über die Zeit, Bild unten: Darstellung des sich verändernden Feststoff-Lösungsverhältnisses
Abb. 6.2 Zeitliche Entwicklung der Feststoff-Lösungsverhältnisse im Lisa-Versuch „Abfall CA528 mit IP21-Lösung“

Abb. 6.3 Entwicklung der Lösungsdichte und der Wassergehalte in der Lösung im Lisa-Versuch „Abfall CA528 mit IP21-Lösung“ mit fortschreitender Reaktionszeit und Probennahme
Abb. 6.4 Zeitliche Entwicklung der Hauptelementgehalte in der Lösung im Lisa-Versuch „Abfall CA528 mit IP21-Lösung“

Abb. 6.5 Zeitliche Entwicklung des pH-Wertes in der Lösung im Lisa-Versuch „Abfall CA528 mit IP21-Lösung“
Abb. 6.6 Zeitliche Entwicklung der Schwermetallgehalte in der Lösung im Lisa-Versuch „Abfall CA528 mit IP21-Lösung“

Abb. 6.7 Zeitliche Entwicklung Kumulierter Austrag von Schwermetallen aus dem Abfall in die Lösung im Lisa-Versuch „Abfall CA528 mit IP21-Lösung“
6.1.2 CA528 - Batch-Versuche

Die Auslaugreaktion des Abfalls CA528 mit IP21-Lösung wurde zum Vergleich mit den Ergebnissen der Lisa-Versuche auch in Batch-Versuchen mit unterschiedlichen Feststoff-Lösungsverhältnissen durchgeführt und die Lösungszusammensetzungen nach 7, 21, 28, 35, 49, 56, 63 und 84 Tagen (Abb. 6.9 bis Abb. 6.15) bei den untersuchten s/f von 0,227, 0,303, 0,455 und 0,902 analysiert. Besonders aus Abb. 6.15 wird deutlich, dass bei den niedrigen s/f-Verhältnissen relativ schnell eine weitestgehende Auslaugung der Schwermetalle erreicht wird, während beim größten Verhältnis von 0,902 das Maximum noch nicht erreicht wurde. Da jeder Batch-Versuch doppelt ausgeführt wurde, ist sichergestellt, dass diese Aussagen belastbar sind. Mit der Modellierung verglichen werden können im Grunde nur die experimentellen Ergebnisse, die die maximale Auslaugbarkeit erreicht haben.
Tab. 6.7 Experimentelle Ergebnisse der Batch-Versuche mit unterschiedlichen Feststoff-Lösungsverhältnissen (s/f) zur Reaktion der Flugasche CA528 mit IP21-Lösung [Teil 1]

<table>
<thead>
<tr>
<th>Labor-Nr.</th>
<th>Probenbezeichnung</th>
<th>Zeit [d]</th>
<th>s / f [kg/kg]</th>
<th>Dichte [g/cm³]</th>
<th>pH</th>
<th>Temp. [°C]</th>
</tr>
</thead>
<tbody>
<tr>
<td>29129</td>
<td>CA528+IP21 7 Tage</td>
<td>7</td>
<td>0,880</td>
<td>1,28</td>
<td>6,01</td>
<td>24,30</td>
</tr>
<tr>
<td>29130</td>
<td>CA528+IP21 21 Tage</td>
<td>21</td>
<td>0,913</td>
<td>1,27</td>
<td>5,52</td>
<td>25,00</td>
</tr>
<tr>
<td>29131</td>
<td>CA528+IP21 35 Tage</td>
<td>35</td>
<td>0,902</td>
<td>1,28</td>
<td>5,74</td>
<td>24,30</td>
</tr>
<tr>
<td>29132</td>
<td>CA528+IP21 49 Tage</td>
<td>49</td>
<td>0,909</td>
<td>1,30</td>
<td>5,66</td>
<td>29,40</td>
</tr>
<tr>
<td>29133</td>
<td>CA528+IP21 63 Tage</td>
<td>63</td>
<td>0,902</td>
<td>1,28</td>
<td>5,60</td>
<td>27,20</td>
</tr>
<tr>
<td>29134</td>
<td>CA528+IP21 77 Tage</td>
<td>77</td>
<td>0,906</td>
<td>1,28</td>
<td>6,62</td>
<td>28,60</td>
</tr>
<tr>
<td>30371.01</td>
<td>CA528+IP21 28 Tage</td>
<td>28</td>
<td>0,455</td>
<td>1,28</td>
<td>5,60</td>
<td>25,00</td>
</tr>
<tr>
<td>30371.02</td>
<td>CA528+IP21 28 Tage</td>
<td>28</td>
<td>0,455</td>
<td>1,28</td>
<td>5,60</td>
<td>25,00</td>
</tr>
<tr>
<td>30371.03</td>
<td>CA528+IP21 56 Tage</td>
<td>56</td>
<td>0,455</td>
<td>1,28</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>30371.04</td>
<td>CA528+IP21 56 Tage</td>
<td>56</td>
<td>0,455</td>
<td>1,28</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>30371.05</td>
<td>CA528+IP21 84 Tage</td>
<td>84</td>
<td>0,455</td>
<td>1,28</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>30371.06</td>
<td>CA528+IP21 84 Tage</td>
<td>84</td>
<td>0,455</td>
<td>1,28</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>30372.01</td>
<td>CA528+IP21 28 Tage</td>
<td>28</td>
<td>0,303</td>
<td>1,28</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>30372.02</td>
<td>CA528+IP21 28 Tage</td>
<td>28</td>
<td>0,303</td>
<td>1,28</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>30372.03</td>
<td>CA528+IP21 56 Tage</td>
<td>56</td>
<td>0,303</td>
<td>1,28</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>30372.04</td>
<td>CA528+IP21 56 Tage</td>
<td>56</td>
<td>0,303</td>
<td>1,28</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>30372.05</td>
<td>CA528+IP21 84 Tage</td>
<td>84</td>
<td>0,303</td>
<td>1,28</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>30372.06</td>
<td>CA528+IP21 84 Tage</td>
<td>84</td>
<td>0,303</td>
<td>1,28</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>30373.01</td>
<td>CA528+IP21 28 Tage</td>
<td>28</td>
<td>0,227</td>
<td>1,28</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>30373.02</td>
<td>CA528+IP21 28 Tage</td>
<td>28</td>
<td>0,227</td>
<td>1,28</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>30373.03</td>
<td>CA528+IP21 56 Tage</td>
<td>56</td>
<td>0,227</td>
<td>1,28</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>30373.04</td>
<td>CA528+IP21 56 Tage</td>
<td>56</td>
<td>0,227</td>
<td>1,28</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>30373.05</td>
<td>CA528+IP21 84 Tage</td>
<td>84</td>
<td>0,227</td>
<td>1,28</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>30373.06</td>
<td>CA528+IP21 84 Tage</td>
<td>84</td>
<td>0,227</td>
<td>1,28</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

--- = nicht gemessen
Tab. 6.8 Experimentelle Ergebnisse der Batch-Versuche mit unterschiedlichen Feststoff-Lösungsverhältnissen (s/f) zur Reaktion der Flugasche CA528 mit IP21-Lösung [Teil 2]

<table>
<thead>
<tr>
<th>Labor-Nr.</th>
<th>Na</th>
<th>K</th>
<th>Ca</th>
<th>Mg</th>
<th>Cl</th>
<th>SO₄</th>
<th>Cd</th>
<th>Pb</th>
<th>Zn</th>
</tr>
</thead>
<tbody>
<tr>
<td>29129</td>
<td>0,598</td>
<td>0,677</td>
<td>0,0419</td>
<td>3,618</td>
<td>8,718</td>
<td>0,029</td>
<td>4,85·10⁻⁰⁵</td>
<td>0,0·10⁻⁰⁰</td>
<td>1,03·10⁻⁰²</td>
</tr>
<tr>
<td>29130</td>
<td>0,553</td>
<td>0,692</td>
<td>0,1297</td>
<td>3,846</td>
<td>9,240</td>
<td>0,015</td>
<td>1,01·10⁻⁰⁴</td>
<td>8,28·10⁻⁰⁴</td>
<td>2,86·10⁻⁰²</td>
</tr>
<tr>
<td>29131</td>
<td>0,534</td>
<td>0,696</td>
<td>0,1042</td>
<td>3,995</td>
<td>9,405</td>
<td>0,012</td>
<td>3,71·10⁻⁰⁴</td>
<td>1,70·10⁻⁰²</td>
<td>5,13·10⁻⁰²</td>
</tr>
<tr>
<td>29132</td>
<td>0,512</td>
<td>0,708</td>
<td>0,2421</td>
<td>3,869</td>
<td>9,547</td>
<td>0,006</td>
<td>3,61·10⁻⁰⁴</td>
<td>2,84·10⁻⁰²</td>
<td>3,95·10⁻⁰²</td>
</tr>
<tr>
<td>29133</td>
<td>0,548</td>
<td>0,743</td>
<td>0,1912</td>
<td>4,051</td>
<td>9,586</td>
<td>0,009</td>
<td>4,83·10⁻⁰⁴</td>
<td>2,74·10⁻⁰²</td>
<td>5,77·10⁻⁰²</td>
</tr>
<tr>
<td>29134</td>
<td>0,492</td>
<td>0,633</td>
<td>0,3492</td>
<td>4,075</td>
<td>9,847</td>
<td>0,006</td>
<td>4,98·10⁻⁰⁴</td>
<td>3,07·10⁻⁰²</td>
<td>1,02·10⁻⁰¹</td>
</tr>
<tr>
<td>30371.01</td>
<td>0,532</td>
<td>0,610</td>
<td>0,0051</td>
<td>3,884</td>
<td>8,850</td>
<td>0,202</td>
<td>2,05·10⁻⁰⁴</td>
<td>7,24·10⁻⁰³</td>
<td>1,81·10⁻⁰²</td>
</tr>
<tr>
<td>30371.02</td>
<td>0,542</td>
<td>0,624</td>
<td>0,0043</td>
<td>3,947</td>
<td>9,002</td>
<td>0,240</td>
<td>1,81·10⁻⁰⁴</td>
<td>3,57·10⁻⁰³</td>
<td>2,23·10⁻⁰²</td>
</tr>
<tr>
<td>30371.03</td>
<td>0,512</td>
<td>0,543</td>
<td>0,0070</td>
<td>3,884</td>
<td>8,875</td>
<td>0,145</td>
<td>1,33·10⁻⁰⁴</td>
<td>2,46·10⁻⁰³</td>
<td>1,94·10⁻⁰²</td>
</tr>
<tr>
<td>30371.04</td>
<td>0,518</td>
<td>0,562</td>
<td>0,0057</td>
<td>3,902</td>
<td>8,875</td>
<td>0,177</td>
<td>1,28·10⁻⁰⁴</td>
<td>1,44·10⁻⁰³</td>
<td>2,01·10⁻⁰²</td>
</tr>
<tr>
<td>30371.05</td>
<td>0,510</td>
<td>0,600</td>
<td>0,0082</td>
<td>3,924</td>
<td>9,031</td>
<td>0,116</td>
<td>1,45·10⁻⁰⁴</td>
<td>2,28·10⁻⁰³</td>
<td>2,11·10⁻⁰²</td>
</tr>
<tr>
<td>30371.06</td>
<td>0,494</td>
<td>0,602</td>
<td>0,0086</td>
<td>3,849</td>
<td>8,945</td>
<td>0,107</td>
<td>1,39·10⁻⁰⁴</td>
<td>2,15·10⁻⁰³</td>
<td>2,04·10⁻⁰²</td>
</tr>
<tr>
<td>30372.01</td>
<td>0,509</td>
<td>0,574</td>
<td>0,0040</td>
<td>4,027</td>
<td>9,024</td>
<td>0,248</td>
<td>2,96·10⁻⁰⁴</td>
<td>1,67·10⁻⁰²</td>
<td>1,85·10⁻⁰²</td>
</tr>
<tr>
<td>30372.02</td>
<td>0,508</td>
<td>0,579</td>
<td>0,0040</td>
<td>4,007</td>
<td>9,225</td>
<td>0,243</td>
<td>1,80·10⁻⁰⁴</td>
<td>1,12·10⁻⁰²</td>
<td>1,95·10⁻⁰²</td>
</tr>
<tr>
<td>30372.03</td>
<td>0,475</td>
<td>0,452</td>
<td>0,0043</td>
<td>4,047</td>
<td>9,051</td>
<td>0,238</td>
<td>1,89·10⁻⁰⁴</td>
<td>1,25·10⁻⁰²</td>
<td>2,04·10⁻⁰²</td>
</tr>
<tr>
<td>30372.04</td>
<td>0,474</td>
<td>0,523</td>
<td>0,0059</td>
<td>3,984</td>
<td>9,358</td>
<td>0,154</td>
<td>2,40·10⁻⁰⁴</td>
<td>1,25·10⁻⁰²</td>
<td>3,57·10⁻⁰²</td>
</tr>
<tr>
<td>30372.05</td>
<td>0,437</td>
<td>0,508</td>
<td>0,0045</td>
<td>3,729</td>
<td>9,029</td>
<td>0,168</td>
<td>1,00·10⁻⁰⁴</td>
<td>1,67·10⁻⁰³</td>
<td>1,57·10⁻⁰²</td>
</tr>
<tr>
<td>30372.06</td>
<td>0,392</td>
<td>0,374</td>
<td>0,0052</td>
<td>4,061</td>
<td>9,280</td>
<td>0,139</td>
<td>1,53·10⁻⁰⁴</td>
<td>1,18·10⁻⁰²</td>
<td>1,96·10⁻⁰²</td>
</tr>
<tr>
<td>30373.01</td>
<td>0,487</td>
<td>0,558</td>
<td>0,0025</td>
<td>4,021</td>
<td>8,899</td>
<td>0,327</td>
<td>1,19·10⁻⁰⁴</td>
<td>1,76·10⁻⁰³</td>
<td>1,63·10⁻⁰²</td>
</tr>
<tr>
<td>30373.02</td>
<td>0,499</td>
<td>0,547</td>
<td>0,0034</td>
<td>4,010</td>
<td>9,161</td>
<td>0,286</td>
<td>1,82·10⁻⁰⁴</td>
<td>1,42·10⁻⁰²</td>
<td>1,99·10⁻⁰²</td>
</tr>
<tr>
<td>30373.03</td>
<td>0,493</td>
<td>0,562</td>
<td>0,0037</td>
<td>4,086</td>
<td>9,145</td>
<td>0,300</td>
<td>1,20·10⁻⁰⁴</td>
<td>2,10·10⁻⁰²</td>
<td>1,82·10⁻⁰²</td>
</tr>
<tr>
<td>30373.04</td>
<td>0,459</td>
<td>0,528</td>
<td>0,0044</td>
<td>4,044</td>
<td>9,223</td>
<td>0,219</td>
<td>1,52·10⁻⁰⁴</td>
<td>1,03·10⁻⁰²</td>
<td>1,59·10⁻⁰²</td>
</tr>
<tr>
<td>30373.05</td>
<td>0,434</td>
<td>0,480</td>
<td>0,0050</td>
<td>4,033</td>
<td>9,202</td>
<td>0,173</td>
<td>1,79·10⁻⁰⁴</td>
<td>1,13·10⁻⁰²</td>
<td>2,15·10⁻⁰²</td>
</tr>
<tr>
<td>30373.06</td>
<td>0,413</td>
<td>0,427</td>
<td>0,0047</td>
<td>4,086</td>
<td>9,192</td>
<td>0,171</td>
<td>1,39·10⁻⁰⁴</td>
<td>9,83·10⁻⁰³</td>
<td>1,72·10⁻⁰²</td>
</tr>
</tbody>
</table>
Abb. 6.9 Zeitliche Entwicklung der Hauptelementgehalte der Lösungen in den Batch-Versuchen „Abfall CA528 mit IP21-Lösung“ bei einem Feststoff-Lösungsverhältnis von 0,227

Abb. 6.10 Zeitliche Entwicklung der Hauptelementgehalte der Lösungen in den Batch-Versuchen „Abfall CA528 mit IP21-Lösung“ bei einem Feststoff-Lösungsverhältnis von 0,303
Abb. 6.11 Zeitliche Entwicklung der Hauptelementgehalte der Lösungen in den Batch-Versuchen „Abfall CA528 mit IP21-Lösung“ bei einem Feststoff-Lösungsverhältnis von 0,455

Abb. 6.13 Zeitliche Entwicklung von Pb in den Lösungen der Batch-Versuche „Abfall CA528 mit IP21-Lösung“ bei den Feststoff-Lösungsverhältnissen von 0,227, 0,303, 0,455 und 0,902

Abb. 6.14 Zeitliche Entwicklung von Zn in den Lösungen der Batch-Versuche „Abfall CA528 mit IP21-Lösung“ bei den Feststoff-Lösungsverhältnissen von 0,207, 0,303, 0,455 und 0,902
Abb. 6.15 Zeitliche Entwicklung von Cd in den Lösungen der Batch-Versuche „Abfall CA528 mit IP21-Lösung“ bei den Feststoff-Lösungsverhältnissen von 0,227, 0,303, 0,455 und 0,902

6.1.3 CA528 - Vergleich der Ergebnisse aus LISA- und Batch-Versuchen

messenen Schwermetallgehalte stark ansteigen und am Ende der Versuche ein Ende der Auslaugung noch nicht erreicht ist.

Daraus ergibt sich die Schwierigkeit, die richtigen Proben miteinander zu vergleichen und diese wiederum mit einem entsprechenden s/f bzw. z, aus der Modellierung zu korrelieren. Verglichen werden können nur Proben, bei denen das s/f bekannt ist und bei denen eine maximale Auslaugung erreicht wurde. Die LISA-Ergebnisse scheinen sich praktische alle durch ein einheitliches s/f zu ergeben, das sich ziemlich früh in dem Versuch eingestellt hat und viel niedriger ist, als der Menge eingesetzten Feststoffs und Lösung entspricht. Durch das frühe Aushärten des Abfalls im LISA-Versuch kann damit die ursprüngliche Idee, nämlich das s/f zu vergrößern, praktisch nicht realisiert werden. Diese Problematik führt letztendlich dazu, dass verwertbare Aussagen aus LISA-Versuchen nicht oder nur begrenzt erhalten werden können. Für praktische Belange sind die Randbedingungen in einem Batch-Versuch mit bekanntem s/f, bei dem durch sukzessive Probennahme die maximale Auslaugbarkeit schnell und einfach zu ermitteln ist, also nach wie vor die Methode der Wahl.

Abb. 6.16
Vergleich der zeitlichen Entwicklung der Hauptelemente in Lisa und Batch-Versuchen bei einem anfänglichen Feststoff-Lösungsverhältnis von 0,9
6.1.4 CA528 - Geochemische Modellierung und Vergleich mit Experimenten

Abb. 6.17 Vergleich der zeitlichen Entwicklung der Pb-, Zn- und Cd-Gehalte aus Lisa und Batch-Versuchen bei einem anfänglichen Feststoff-Lösungsverhältnis von 0,9
Tab. 6.9 Umrechnung der Abfallzusammensetzung der Flugasche CA528 in hypothetische (vermutete) Mineralanteile

<table>
<thead>
<tr>
<th>Bestandteil</th>
<th>Masse (kg)</th>
<th>Formel</th>
<th>Masse (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alles Mg als Diopid</td>
<td>5,92183</td>
<td>CaMg(SiO₃)₂</td>
<td>0,592183</td>
</tr>
<tr>
<td>Rest Ca als Ca(OH)₂</td>
<td>1,555136</td>
<td>Ca(OH)₂</td>
<td>1,555136</td>
</tr>
<tr>
<td>Rest K als K₂SO₄</td>
<td>0,157897</td>
<td>K₂SO₄</td>
<td>0,157897</td>
</tr>
<tr>
<td>Rest SO₄ als Na₂SO₄</td>
<td>0,242103</td>
<td>Na₂SO₄</td>
<td>0,242103</td>
</tr>
<tr>
<td>Rest Na als NaOH</td>
<td>0,193423</td>
<td>NaOH</td>
<td>0,193423</td>
</tr>
<tr>
<td>Alles C als Graphit</td>
<td>0,131317</td>
<td>C Graphit</td>
<td>0,131317</td>
</tr>
<tr>
<td>Rest SO₄ als Anhydrit</td>
<td>0,616545</td>
<td>CaSO₄</td>
<td>0,616545</td>
</tr>
<tr>
<td>Alles als Al(OH)₃</td>
<td>0,172780</td>
<td>Al(OH)₃</td>
<td>0,172780</td>
</tr>
<tr>
<td>Alles als Ca(OH)₂</td>
<td>0,677352</td>
<td>Ca(OH)₂</td>
<td>0,677352</td>
</tr>
<tr>
<td>Rest Si als Quartz</td>
<td>1,871874</td>
<td>Quartz_SiO₂</td>
<td>1,871874</td>
</tr>
<tr>
<td>Auerbachs Salz</td>
<td>0,21762</td>
<td>NaPb₂(CO₃)₂(OH)</td>
<td>0,21762</td>
</tr>
<tr>
<td>Alles als ZnO</td>
<td>0,575791</td>
<td>ZnO-aktiv</td>
<td>0,575791</td>
</tr>
<tr>
<td>Alles als CdCl₂</td>
<td>0,000952</td>
<td>CdCl₂</td>
<td>0,000952</td>
</tr>
<tr>
<td>Hälfte Fe als Hämait</td>
<td>0,300528</td>
<td>Fe₂O₃</td>
<td>0,300528</td>
</tr>
<tr>
<td>Hälfte Fe als Magnetit</td>
<td>0,343685</td>
<td>Fe₂O₃</td>
<td>0,343685</td>
</tr>
</tbody>
</table>

Durch Fettdruck hervorgehobene Phasen wurden mit RDA nachgewiesen.

Definiert man die so ermittelte Zusammensetzung in EQ6 als „Special Reactant“ und lässt diesen mit IP21-Lösung reagieren, ergeben sich die in Abb. 6.18 bis Abb. 6.20 jeweils im oberen Teil dargestellten Modellierungen. Dabei rechnet EQ6 für jeden einzelnen Teilschritt bis zum Gleichgewicht.

In den Abbildungen sind jeweils im oberen Teil die Ergebnisse der Gleichgewichtsmodellierung dargestellt und im unteren Teil die der Ungleichgewichtsmodellierung, d. h. bei Unterdrückung einiger Mineralphasen. Unterdrückt wurden solche Phasen, die zu einer besseren Übereinstimmung der Modellierungsergebnisse mit den Ergebnissen der Auslaugexperimente führten. Es handelt sich dabei um kinetisch gehemmte Phasen, die trotz Erreichens der Sättigungskonzentration nicht ausfallen. Durch deren Unterdrückung bleiben sie rechnerisch in der Lösung und erhöhen dadurch die Konzentration an den Elementen, aus denen sie bestehen.
Abb. 6.18 Entwicklung der Hauptelemente in Lösung bei der Modellierung der Reaktion des Abfalls CA528 mit IP21 im z_i-Intervall 0 bis 4 entsprechend 0 bis 4 kg Abfall pro 1 Liter Wasser in der Ausgangslösung

Oben: Gleichgewichtsmodellierung
Unten: Unterdrückung der Phasen Simonkolleit, Polyhalit, Willemit, KCl·2PbCl$_2$, 3KCl·3PbCl$_2$·H$_2$O, Laurionit, Blixit, Alamosit
Abb. 6.19 Entwicklung des pH-Wertes und des Wassergehaltes der Lösung bei der Modellierung der Reaktion des Abfalls CA528 mit IP21-Lösung im z_r-Intervall 0 bis 4 entsprechend 0 bis 4 kg Abfall pro Liter Wasser in der Ausgangslösung
Oben: Gleichgewichtsmodellierung
Unten: Unterdrückung der Phasen Simonkolleit, Polyhalit, Willemitt, KCl\cdot2PbCl$_2$, 3KCl\cdot3PbCl$_2$$\cdotH_2$O, Laurionit, Blixit, Alamosit
Abb. 6.20 Entwicklung Pb, Zn und Cd in Lösung bei der Modellierung der Reaktion des Abfalls CA528 mit IP21 im z_i-Intervall 0 bis 4 entsprechend 0 bis 4 kg Abfall pro 1 Liter Wasser in der Ausgangslösung

Oben: Gleichgewichtsmodellierung

Unten: Unterdrückung der Phasen Simonkolleit, Polyhalit, Willemite, $\text{KCl} \cdot 2\text{PbCl}_2$, $3\text{KCl} \cdot 3\text{PbCl}_2 \cdot \text{H}_2\text{O}$, Lauronit, Blixit, Alamosit

(ACHTUNG! Die untere Skala für Pb, Zn zeigt das Zehnfache an!)
6.1.4.1 Vergleich der experimentellen Ergebnisse des LISA-Versuchs mit der geochemischen Modellierung

Der Vergleich der Ergebnisse der geochemischen Modellierung mit den Lösungszusammensetzungen im Versuch (Abb. 6.21) zeigt, dass die Verfestigung der Probe die Kinetik so stark behindert, dass die Reaktion sehr viel langsamer abläuft, d. h. es hat sich bei den einzelnen Teilschritten noch kein Gleichgewicht eingestellt. Eine relativ gute Anpassung der Modellierung der Lösungszusammensetzung an die Versuchsergebnisse lässt sich für die Hauptelemente durch eine Verschiebung des s/f-Verhältnisses, d. h. der z_i-Werte erreichen (Abb. 6.22).

![Diagramm Vergleich von LISA-Versuch und Modellierung](image_url)

Abb. 6.21 Vergleich der Entwicklung der Hauptelemente in Lösung in Lisa-Versuchen und in der geochemischen Gleichgewichtsmodellierung

wurden. Dieser Vorgang lässt sich in der Modellierung simulieren, indem die Bildung von Bodenkörper unterdrückt wird, die zu den beobachteten höheren Konzentrationen führen.

Die auf diese Art erzeugten Modellierungen sind zum Vergleich in Abb. 6.18 bis Abb. 6.20 im unteren Teil dargestellt.

Abbildung 6.22 Anpassung der Hauptelemente aus der geochemischen Modellierung an die experimentellen Ergebnisse

Die hier dargestellten Ergebnisse machen noch einmal deutlich, dass zwischen dem realen s/f-Verhältnis im LISA-Versuch und der Zusammensetzung der Lösung nur bedingt ein Zusammenhang besteht, da zwischen den einzelnen Teilschritten der Volumenreduzierung ein Gleichgewichtszustand auch nicht näherungsweise erreicht wird (siehe auch Kap. 6.1.3 CA528 - Vergleich der Ergebnisse aus LISA- und Batch-Versuchen).
Abb. 6.23 Vergleich der Entwicklung der Pb-, Zn- und Cd-Gehalte in Lösung in Lisa-Versuchen und in der geochemischen Gleichgewichtsmodellierung

Abb. 6.24 Anpassung der Pb-, Zn- und Cd-Gehalte aus der geochemischen Modellierung an die experimentellen Ergebnisse
Die Schwermetallfreisetzung im LISA-Versuch kann mit geochemischer Modellierung praktisch nicht simuliert werden, da ein unbekanntes s/f-Verhältnis infolge Aushärtens bereits nach ca. 5 Probennahmen eingefroren zu sein scheint. Der ausgehärtete Zustand der LISA-Festphasen erinnerte an einen Schwamm, aus dem sich mit entsprechendem Druck zwar noch Lösung auspressen ließ, in dem die einzelnen Poren untereinander aber nicht miteinander „kommunizieren“, so dass sich die Lösungs zusammensetzung kaum noch änderte.

6.1.4.2 Vergleich der experimentellen Ergebnisse der Batch-Versuche mit der geochemischen Modellierung

Der Vergleich der experimentellen Ergebnisse der Batch-Versuche mit der geochemischen Modellierung zeigt eine relativ weite Streuung der experimentellen Werte bei einem gegebenen s/f-Verhältnis. Dies ist auf unterschiedliche Auslaugzeiten zurückzuführen. Wie zu erwarten ist die Übereinstimmung zwischen Experiment und Modellierung immer dann am besten, wenn die Experimente mit den längsten Laufzeiten betrachtet werden.

Bei den Batch-Versuchen gestaltet sich die Anpassung der Modellierung an die Versuchsergebnisse einfacher und bei den Schwermetallen auch erfolgreicher. Zunächst wurden die Versuchsergebnisse mit \(s/f \ [\text{kg/kg}] = z \) mit der Modellierung verglichen (Abb. 6.25, Abb. 6.26). Weil auch hier bei Pb, Zn und Cd höhere Werte in den Experimenten auftreten als in der Modellierung, wurden einige Mineralphasen mit diesen Schwermetallen ebenfalls unterdrückt.
Abb. 6.25 Vergleich der Entwicklung der Hauptelemente in Lösungen der Batch-Versuche und in der geochemischen Modellierung

Oben: Gleichgewichtsmodellierung

Unten: Unterdrückung der Phasen Simonkolleit, Polyhalit, Willemite, KCl-2PbCl₂, 3KCl-3PbCl₂·H₂O, Laurionit, Blixit, Alamosit
Abb. 6.26 Vergleich der Entwicklung der Pb-, Zn- und Cd-Gehalte in Lösung in Batch-Versuchen und in der geochemischen Gleichgewichtsmodellierung

Es zeigt sich jedoch, dass nun die experimentellen Gehalte unterhalb der Modellierung lagen, aber den gleichen Trend wie diese aufwiesen. Durch eine elementspezifische Anpassung der s/f-Werte konnten beide weitgehend zur Deckung gebracht werden (Abb. 6.27). Diese Anpassung ergibt sich aus der Vermutung, dass zum Zeitpunkt der Probennahmen nicht alle im Abfall enthaltenen Schwermetallanteile herausgelöst wurden. Diese sind vermutlich in glasigen Bestandteilen eingeschlossen.

6.1.5 Ableitbare Aussagen aus der Anpassung der geochemischen Modellierung an die experimentellen Ergebnisse

Wie bereits der Vergleich zwischen LISA-Versuch und Batch-Versuchen ergeben hat (Kap. 6.1.3), zeigt auch die geochemische Modellierung des LISA-Versuchs, dass der eigentliche Zweck des Versuchs, durch sukzessives Erhöhen des s/f-Verhältnisses schneller an belastbare Aussagen über das Auslaugverhalten des untersuchten Abfallstoffes zu gelangen, nicht erreicht werden kann. Durch die Aushärtung ist ein nahezu statischer Zustand entstanden.
Abb. 6.27 Anpassung der Pb-, Zn- und Cd-Gehalte aus der geochemischen Modellierung an die experimentellen Ergebnisse durch Unterdrückung der Phasen Simonkolleit, Polyhalit, Willemit, KCl-2PbCl$_2$, 3KCl-3PbCl$_2$·H$_2$O, Laurionit, Blixit, Alamosit und elementspezifische s/f-Werte

Aus der Anpassung der geochemischen Modellierung an die Batch-Versuche lassen sich folgende Aussagen ableiten:

- Einige Bodenkörper werden nicht gebildet, das geochemische Gleichgewicht wird (nach 84 Tagen) nicht erreicht.
- Durch elementspezifische Anpassungen der s/f-Werte lassen sich deren Verfügbarkeiten im Abfallstoff ermitteln (Tab. 6.10).

Tab. 6.10 Elementspezifische Verfügbarkeiten der Schwermetalle Pb, Zn und Cd, abgeleitet aus der Anpassung der geochemischen Modellierung an die Batch-Versuche des Abfalls CA528 mit IP21-Lösung

<table>
<thead>
<tr>
<th>Element</th>
<th>Verfügbarkeit (84 Tage)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pb</td>
<td>77 %</td>
</tr>
<tr>
<td>Zn</td>
<td>48 %</td>
</tr>
<tr>
<td>Cd</td>
<td>57 %</td>
</tr>
</tbody>
</table>
Diese Verfügbarkeiten sind jedoch nur für die speziellen Randbedingungen der jeweiligen Versuche gültig, sie hängen nicht nur von der Zusammensetzung des Abfalls, sondern auch von der verwendeten Lösung, den Temperatur- und Druckbedingungen sowie von der mechanischen Beanspruchung (Schütteln) und der Dauer der Auslau- gung ab. In einer UTD ist jedoch langfristig von 100 % Verfügbarkeit (Auslauigung) auszugehen. Wann diese erreicht wird, kann nur experimentell bestimmt werden. Eine rechnerische Prognose über die Modellierung ist zwar möglich, sie muss aber über Experimente bestätigt werden.

6.2 Reaktion des Filterstaubs CA539 mit IP21-Lösung

Die Darstellung der Ergebnisse dieses Versuchs und der dazugehörigen Modellierungen erfolgt analog zu der Vorgehensweise in Kap. 6.1 Reaktion der Flugasche CA528 mit IP21-Lösung.

6.2.1 CA539 - Lisa-Versuche

Der LISA-Versuch mit CA539 und IP21-Lösung (LISA3) ist 105 Tage gelaufen. In regelmäßigen Abständen von jeweils 7 Tagen wurde eine Probe genommen und analysiert, zusammen 15 Proben. Die Ergebnisse der Lösungsanalyse sind in Tab. 6.11 bis Tab. 6.16 dargestellt. Um die experimentellen Werte leichter mit den Ergebnissen der geochemischen Modellierung vergleichen zu können, wurden alle Elementgehalte in mol/kgWasser angegeben.
Tab. 6.11 Experimentelle Ergebnisse des LISA-Versuchs zur Reaktion der Flugasche
CA539 mit IP21-Lösung [Teil 1]

<table>
<thead>
<tr>
<th>Labor-Nr.</th>
<th>Probenbezeichnung</th>
<th>Zeit [d]</th>
<th>s / f [kg/kg]</th>
<th>Dichte [g/cm³]</th>
<th>pH</th>
<th>Temp. [°C]</th>
</tr>
</thead>
<tbody>
<tr>
<td>29158</td>
<td>CA 539 + IP21 7 Tage</td>
<td>7</td>
<td>1,110</td>
<td>1,2569</td>
<td>6,36</td>
<td>25,2</td>
</tr>
<tr>
<td>29159</td>
<td>CA 539 + IP21 14 Tage</td>
<td>14</td>
<td>1,146</td>
<td>1,2569</td>
<td>6,23</td>
<td>26,4</td>
</tr>
<tr>
<td>29160</td>
<td>CA 539 + IP21 21 Tage</td>
<td>21</td>
<td>1,185</td>
<td>1,2583</td>
<td>6,24</td>
<td>23,2</td>
</tr>
<tr>
<td>29161</td>
<td>CA 539 + IP21 28 Tage</td>
<td>28</td>
<td>1,227</td>
<td>1,2569</td>
<td>6,17</td>
<td>25,5</td>
</tr>
<tr>
<td>29162</td>
<td>CA 539 + IP21 35 Tage</td>
<td>35</td>
<td>1,272</td>
<td>1,2590</td>
<td>6,07</td>
<td>23,9</td>
</tr>
<tr>
<td>29163</td>
<td>CA 539 + IP21 42 Tage</td>
<td>42</td>
<td>1,322</td>
<td>1,2589</td>
<td>6,08</td>
<td>25,0</td>
</tr>
<tr>
<td>29164</td>
<td>CA 539 + IP21 49 Tage</td>
<td>49</td>
<td>1,375</td>
<td>1,2606</td>
<td>6,07</td>
<td>28,2</td>
</tr>
<tr>
<td>29165</td>
<td>CA 539 + IP21 56 Tage</td>
<td>56</td>
<td>1,432</td>
<td>1,2604</td>
<td>6,07</td>
<td>25,4</td>
</tr>
<tr>
<td>29166</td>
<td>CA 539 + IP21 63 Tage</td>
<td>63</td>
<td>1,494</td>
<td>1,2606</td>
<td>6,05</td>
<td>25,8</td>
</tr>
<tr>
<td>29167</td>
<td>CA 539 + IP21 70 Tage</td>
<td>70</td>
<td>1,562</td>
<td>1,2608</td>
<td>5,96</td>
<td>27,1</td>
</tr>
<tr>
<td>29168</td>
<td>CA 539 + IP21 77 Tage</td>
<td>77</td>
<td>1,634</td>
<td>1,2617</td>
<td>6,06</td>
<td>28,4</td>
</tr>
<tr>
<td>29169</td>
<td>CA 539 + IP21 84 Tage</td>
<td>84</td>
<td>1,716</td>
<td>1,2611</td>
<td>5,97</td>
<td>24,7</td>
</tr>
<tr>
<td>29170</td>
<td>CA 539 + IP21 91 Tage</td>
<td>91</td>
<td>1,804</td>
<td>1,2610</td>
<td>5,99</td>
<td>27,4</td>
</tr>
<tr>
<td>29171</td>
<td>CA 539 + IP21 98 Tage</td>
<td>98</td>
<td>1,910</td>
<td>1,2615</td>
<td>5,94</td>
<td>24,9</td>
</tr>
<tr>
<td>29172</td>
<td>CA 539 + IP21 105 Tage</td>
<td>105</td>
<td>2,025</td>
<td>1,2614</td>
<td>5,90</td>
<td>25,2</td>
</tr>
</tbody>
</table>

Tab. 6.12 Experimentelle Ergebnisse des LISA-Versuchs zur Reaktion der Flugasche
CA539 mit IP21-Lösung [Teil 2]

<table>
<thead>
<tr>
<th>Labor-Nr.</th>
<th>[mol/kg H₂O]</th>
<th>([ext{mol/kg H₂O}])</th>
<th>Cd</th>
<th>Pb</th>
<th>Zn</th>
</tr>
</thead>
<tbody>
<tr>
<td>29158</td>
<td>Na</td>
<td>1,589 0,1239</td>
<td>1,598</td>
<td>1,717</td>
<td>0,1299</td>
</tr>
<tr>
<td>29159</td>
<td>K</td>
<td>1,517 0,2363</td>
<td>1,517</td>
<td>1,102</td>
<td>0,2360</td>
</tr>
<tr>
<td>29160</td>
<td>Ca</td>
<td>1,551 0,2949</td>
<td>1,551</td>
<td>1,133</td>
<td>0,2949</td>
</tr>
<tr>
<td>29161</td>
<td>Mg</td>
<td>1,565 0,3263</td>
<td>1,565</td>
<td>1,129</td>
<td>0,3263</td>
</tr>
<tr>
<td>29162</td>
<td>Cl</td>
<td>1,552 0,3606</td>
<td>1,552</td>
<td>1,125</td>
<td>0,3606</td>
</tr>
<tr>
<td>29163</td>
<td>SO₄</td>
<td>1,569 0,3869</td>
<td>1,569</td>
<td>1,119</td>
<td>0,3869</td>
</tr>
<tr>
<td>29164</td>
<td>Cd</td>
<td>1,543 0,3945</td>
<td>1,543</td>
<td>1,138</td>
<td>0,3945</td>
</tr>
<tr>
<td>29165</td>
<td>Pb</td>
<td>1,545 0,4129</td>
<td>1,545</td>
<td>1,129</td>
<td>0,4129</td>
</tr>
<tr>
<td>29166</td>
<td>Zn</td>
<td>2,233 0,4779</td>
<td>2,233</td>
<td>1,157</td>
<td>0,4779</td>
</tr>
<tr>
<td>29167</td>
<td>Cd</td>
<td>2,229 0,4956</td>
<td>2,229</td>
<td>1,163</td>
<td>0,4956</td>
</tr>
<tr>
<td>29168</td>
<td>Pb</td>
<td>2,187 0,5067</td>
<td>2,187</td>
<td>1,171</td>
<td>0,5067</td>
</tr>
<tr>
<td>29169</td>
<td>Zn</td>
<td>1,526 0,4959</td>
<td>1,526</td>
<td>1,132</td>
<td>0,4959</td>
</tr>
<tr>
<td>29170</td>
<td>Cd</td>
<td>1,592 0,5146</td>
<td>1,592</td>
<td>1,108</td>
<td>0,5146</td>
</tr>
<tr>
<td>29171</td>
<td>Pb</td>
<td>1,494 0,4526</td>
<td>1,494</td>
<td>1,150</td>
<td>0,4526</td>
</tr>
<tr>
<td>29172</td>
<td>Zn</td>
<td>1,488 0,4523</td>
<td>1,488</td>
<td>1,110</td>
<td>0,4523</td>
</tr>
</tbody>
</table>
Tab. 6.13 Experimentelle Ergebnisse des LISA-Versuchs zur Reaktion der Flugasche CA539 mit IP21-Lösung [Teil 3]

<table>
<thead>
<tr>
<th>Labor-Nr.</th>
<th>Todvolumen [g]</th>
<th>Probe [g]</th>
<th>Todvolumen [cm³]</th>
<th>Probe [cm³]</th>
<th>Σ Volumen [cm³]</th>
<th>Feststoff [g]</th>
<th>Lösung [cm³]</th>
<th>s / f [g/cm³]</th>
</tr>
</thead>
<tbody>
<tr>
<td>29158</td>
<td>4,5</td>
<td>5,3</td>
<td>3,6</td>
<td>4,2</td>
<td>7,8</td>
<td>350,1</td>
<td>236,1</td>
<td>1,5</td>
</tr>
<tr>
<td>29159</td>
<td>5,1</td>
<td>5,0</td>
<td>4,1</td>
<td>4,0</td>
<td>8,0</td>
<td>350,1</td>
<td>228,0</td>
<td>1,5</td>
</tr>
<tr>
<td>29160</td>
<td>5,1</td>
<td>5,0</td>
<td>4,0</td>
<td>4,0</td>
<td>8,0</td>
<td>350,1</td>
<td>220,0</td>
<td>1,6</td>
</tr>
<tr>
<td>29161</td>
<td>4,9</td>
<td>5,1</td>
<td>3,9</td>
<td>4,1</td>
<td>8,0</td>
<td>350,1</td>
<td>212,0</td>
<td>1,7</td>
</tr>
<tr>
<td>29162</td>
<td>4,7</td>
<td>5,8</td>
<td>3,7</td>
<td>4,6</td>
<td>8,3</td>
<td>350,1</td>
<td>203,7</td>
<td>1,7</td>
</tr>
<tr>
<td>29163</td>
<td>5,3</td>
<td>5,0</td>
<td>4,2</td>
<td>3,9</td>
<td>8,1</td>
<td>350,1</td>
<td>195,5</td>
<td>1,8</td>
</tr>
<tr>
<td>29164</td>
<td>5,1</td>
<td>4,9</td>
<td>4,1</td>
<td>3,9</td>
<td>8,0</td>
<td>350,1</td>
<td>187,6</td>
<td>1,9</td>
</tr>
<tr>
<td>29165</td>
<td>5,0</td>
<td>5,2</td>
<td>4,0</td>
<td>4,1</td>
<td>8,1</td>
<td>350,1</td>
<td>179,5</td>
<td>2,0</td>
</tr>
<tr>
<td>29166</td>
<td>5,3</td>
<td>4,8</td>
<td>4,2</td>
<td>3,8</td>
<td>8,0</td>
<td>350,1</td>
<td>171,4</td>
<td>2,0</td>
</tr>
<tr>
<td>29167</td>
<td>4,9</td>
<td>5,0</td>
<td>3,9</td>
<td>4,0</td>
<td>7,9</td>
<td>350,1</td>
<td>163,5</td>
<td>2,1</td>
</tr>
<tr>
<td>29168</td>
<td>4,9</td>
<td>5,3</td>
<td>3,9</td>
<td>4,2</td>
<td>8,1</td>
<td>350,1</td>
<td>155,4</td>
<td>2,3</td>
</tr>
<tr>
<td>29169</td>
<td>5,2</td>
<td>4,7</td>
<td>4,1</td>
<td>3,8</td>
<td>7,8</td>
<td>350,1</td>
<td>147,6</td>
<td>2,4</td>
</tr>
<tr>
<td>29170</td>
<td>5,6</td>
<td>5,1</td>
<td>4,5</td>
<td>4,1</td>
<td>8,5</td>
<td>350,1</td>
<td>139,0</td>
<td>2,5</td>
</tr>
<tr>
<td>29171</td>
<td>5,2</td>
<td>5,2</td>
<td>4,1</td>
<td>4,1</td>
<td>8,3</td>
<td>350,1</td>
<td>130,8</td>
<td>2,7</td>
</tr>
<tr>
<td>29172</td>
<td>5,3</td>
<td>5,0</td>
<td>4,2</td>
<td>3,9</td>
<td>8,1</td>
<td>350,1</td>
<td>122,6</td>
<td>2,9</td>
</tr>
</tbody>
</table>

Tab. 6.14 Experimentelle Ergebnisse des LISA-Versuchs zur Reaktion der Flugasche CA539 mit IP21-Lösung [Teil 4]

<table>
<thead>
<tr>
<th>Labor-Nr.</th>
<th>Austrag Cd [mg/kg]</th>
<th>Σ Austrag Cd [mg/kg]</th>
<th>c(s) / c(f) für Cd [mg/kg]/[mg/kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>29158</td>
<td>3,71</td>
<td>3,71</td>
<td>0,71</td>
</tr>
<tr>
<td>29159</td>
<td>4,49</td>
<td>8,21</td>
<td>0,58</td>
</tr>
<tr>
<td>29160</td>
<td>5,04</td>
<td>13,24</td>
<td>0,50</td>
</tr>
<tr>
<td>29161</td>
<td>5,11</td>
<td>18,35</td>
<td>0,46</td>
</tr>
<tr>
<td>29162</td>
<td>5,48</td>
<td>23,84</td>
<td>0,42</td>
</tr>
<tr>
<td>29163</td>
<td>5,38</td>
<td>29,22</td>
<td>0,40</td>
</tr>
<tr>
<td>29164</td>
<td>5,39</td>
<td>34,60</td>
<td>0,36</td>
</tr>
<tr>
<td>29165</td>
<td>5,58</td>
<td>40,18</td>
<td>0,33</td>
</tr>
<tr>
<td>29166</td>
<td>5,75</td>
<td>45,93</td>
<td>0,29</td>
</tr>
<tr>
<td>29167</td>
<td>5,66</td>
<td>51,59</td>
<td>0,27</td>
</tr>
<tr>
<td>29168</td>
<td>5,92</td>
<td>57,51</td>
<td>0,24</td>
</tr>
<tr>
<td>29169</td>
<td>5,60</td>
<td>63,11</td>
<td>0,22</td>
</tr>
<tr>
<td>29170</td>
<td>6,02</td>
<td>69,14</td>
<td>0,20</td>
</tr>
<tr>
<td>29171</td>
<td>5,96</td>
<td>75,10</td>
<td>0,17</td>
</tr>
<tr>
<td>29172</td>
<td>5,87</td>
<td>80,97</td>
<td>0,14</td>
</tr>
</tbody>
</table>
Tab. 6.15 Experimentelle Ergebnisse des LISA-Versuchs zur Reaktion der Flugasche CA539 mit IP21-Lösung (Teil 5)

<table>
<thead>
<tr>
<th>Labor-Nr.</th>
<th>Austrag Pb [mg/kg]</th>
<th>Σ Austrag Pb [mg/kg]</th>
<th>c(s) / c(f) für Pb [mg/kg]/[mg/kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>29158</td>
<td>75,17</td>
<td>75,17</td>
<td>2,9</td>
</tr>
<tr>
<td>29159</td>
<td>80,14</td>
<td>155,31</td>
<td>2,8</td>
</tr>
<tr>
<td>29160</td>
<td>81,55</td>
<td>236,86</td>
<td>2,8</td>
</tr>
<tr>
<td>29161</td>
<td>79,00</td>
<td>315,86</td>
<td>2,8</td>
</tr>
<tr>
<td>29162</td>
<td>81,43</td>
<td>397,29</td>
<td>2,8</td>
</tr>
<tr>
<td>29163</td>
<td>78,83</td>
<td>476,12</td>
<td>2,8</td>
</tr>
<tr>
<td>29164</td>
<td>77,98</td>
<td>554,11</td>
<td>2,8</td>
</tr>
<tr>
<td>29165</td>
<td>80,44</td>
<td>634,55</td>
<td>2,7</td>
</tr>
<tr>
<td>29166</td>
<td>81,93</td>
<td>716,48</td>
<td>2,6</td>
</tr>
<tr>
<td>29167</td>
<td>80,21</td>
<td>796,69</td>
<td>2,5</td>
</tr>
<tr>
<td>29168</td>
<td>82,62</td>
<td>879,31</td>
<td>2,5</td>
</tr>
<tr>
<td>29169</td>
<td>82,77</td>
<td>962,08</td>
<td>2,4</td>
</tr>
<tr>
<td>29170</td>
<td>89,29</td>
<td>1051,38</td>
<td>2,4</td>
</tr>
<tr>
<td>29171</td>
<td>87,79</td>
<td>1139,16</td>
<td>2,4</td>
</tr>
<tr>
<td>29172</td>
<td>86,97</td>
<td>1226,13</td>
<td>2,3</td>
</tr>
</tbody>
</table>

Tab. 6.16 Experimentelle Ergebnisse des LISA-Versuchs zur Reaktion der Flugasche CA539 mit IP21-Lösung (Teil 6)

<table>
<thead>
<tr>
<th>Labor-Nr.</th>
<th>Austrag Zn [mg/kg]</th>
<th>Σ Austrag Zn [mg/kg]</th>
<th>c(s) / c(f) für Zn [mg/kg]/[mg/kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>29158</td>
<td>2,1</td>
<td>2,1</td>
<td>438,7</td>
</tr>
<tr>
<td>29159</td>
<td>3,9</td>
<td>6,0</td>
<td>248,1</td>
</tr>
<tr>
<td>29160</td>
<td>6,4</td>
<td>12,4</td>
<td>148,7</td>
</tr>
<tr>
<td>29161</td>
<td>8,1</td>
<td>20,5</td>
<td>116,7</td>
</tr>
<tr>
<td>29162</td>
<td>10,6</td>
<td>31,1</td>
<td>93,0</td>
</tr>
<tr>
<td>29163</td>
<td>11,0</td>
<td>42,1</td>
<td>88,0</td>
</tr>
<tr>
<td>29164</td>
<td>12,2</td>
<td>54,3</td>
<td>77,7</td>
</tr>
<tr>
<td>29165</td>
<td>13,3</td>
<td>67,6</td>
<td>72,1</td>
</tr>
<tr>
<td>29166</td>
<td>- - -</td>
<td>82,2</td>
<td>- - -</td>
</tr>
<tr>
<td>29167</td>
<td>- - -</td>
<td>96,9</td>
<td>- - -</td>
</tr>
<tr>
<td>29168</td>
<td>- - -</td>
<td>114,3</td>
<td>- - -</td>
</tr>
<tr>
<td>29169</td>
<td>15,8</td>
<td>130,1</td>
<td>59,1</td>
</tr>
<tr>
<td>29170</td>
<td>17,3</td>
<td>147,4</td>
<td>58,7</td>
</tr>
<tr>
<td>29171</td>
<td>17,5</td>
<td>164,9</td>
<td>56,3</td>
</tr>
<tr>
<td>29172</td>
<td>18,1</td>
<td>182,9</td>
<td>53,8</td>
</tr>
</tbody>
</table>
Abb. 6.28 zeigt den Lösungsausstrag infolge der Probennahme und das sich dadurch verändernde Feststoff-Lösungs-Verhältnis (s/f). Der Lösungsausstrag wurde in % des ursprünglich eingesetzten Lösungsvolumens dargestellt. Der Versuch musste beendet werden, als keine Lösung mehr ausgepresst werden konnte. Zu diesem Zeitpunkt waren von der eingesetzten Lösungsmasse gut 48 % für die Probennahme verbraucht. Es ließ sich keine weitere Lösung auspressen, weil durch die Reaktion des Abfalls mit der Lösung der Abfall ausgehärtet war. Das in Kap. 6.1.1 zu Abb. 6.1 ausgeführte gilt hier ebenso.

Abb. 6.29 zeigt die Entwicklung des s/f-Verhältnisses in kg/kg H₂O in Lösung über die Zeit, das sich durch die sukzessiven Probennahmen ständig vergrößerte. Das s/f-Verhältnis in kg/kg H₂O in Lösung entspricht dem z_i in der Modellierung für den Fall eines vollständigen Gleichgewichts und eines konstanten Wassergehalts in der Lösung. Davon kann jedoch in den Experimenten nicht ausgegangen werden.

Abb. 6.28 Kumulierter relativer Lösungsaustrag aus dem LISA-Versuch infolge wiederholter Probennahme;
Oben: Darstellung über die Zeit,
Unten: Darstellung des sich verändernden Feststoff-Lösungsverhältnisses
Abb. 6.29 Zeitliche Entwicklung der Feststoff-Lösungsverhältnisse im Lisa-Versuch „Abfall CA539 mit IP21-Lösung“

Abb. 6.30 Entwicklung der Lösungsdichte und der Wassergehalte in der Lösung im Lisa-Versuch „Abfall CA539 mit IP21-Lösung“ mit fortschreitender Reaktionszeit und Probennahme
Abb. 6.31 Zeitliche Entwicklung der Haupelementgehalte in der Lösung im Lisa-Versuch „Abfall CA539 mit IP21-Lösung“

Abb. 6.32 Zeitliche Entwicklung des pH-Wertes in der Lösung im Lisa-Versuch „Abfall CA539 mit IP21-Lösung“
CA539 mit IP21-Lösung
Schwermetallgehalte der Lösungen LISA3

Zn [mol/kgWasser]

Pb, Cd [mol/kgWasser]

Zeit [d]

0,000
0,005
0,010
0,015
0,020
0,025

0,000
0,002
0,004
0,006
0,008
0,010
0,012
0,014
0,016

Abb. 6.33 Zeitliche Entwicklung der Schwermetallgehalte in der Lösung im Lisa-Versuch „Abfall CA539 mit IP21-Lösung“

CA539 mit IP21-Lösung
Kumulierter Austrag LISA3

Austrag Zn [mg]

Austrag Cd, Pb [mg]

Zeit [d]

0 20 40 60 80 100 120

Abb. 6.34 Zeitliche Entwicklung des Kumulierten Austrags von Schwermetallen aus dem Abfall in die Lösung im Lisa-Versuch „Abfall CA539 mit IP21-Lösung“

76
Abb. 6.35 Zeitliche Entwicklung der elementspezifischen Auslaugbarkeiten der Schwermetalle Pb, Zn und Cd im Lisa-Versuch „Abfall CA539 mit IP21-Lösung“

6.2.2 CA539 - Batch-Versuche

Die Auslaugreaktion des Abfalls CA539 mit IP21-Lösung wurde zum Vergleich mit den Ergebnissen der Lisa-Versuche parallel in Batch-Versuchen mit unterschiedlichen Feststoff-Lösungsverhältnissen durchgeführt (Tab. 6.17 und Tab. 6.18) und die Lösungszusammensetzungen nach 7, 21, 28, 35, 49, 56, 63, 77 und 84 Tagen (Abb. 6.36 bis Abb. 6.42) bei den untersuchten s/f von 0,227, 0,370, 0,556 und 1,112 analysiert. Besonders aus Abb. 6.42 wird deutlich, dass bei den niedrigen s/f-Verhältnissen relativ schnell eine weitestgehende Auslaugung der Schwermetalle erreicht wird, während beim größten Verhältnis von 1,112 das Maximum noch nicht erreicht wurde. Da jeder Batch-Versuch doppelt ausgeführt wurde, ist sichergestellt, dass diese Aussagen belastbar sind. Mit der Modellierung verglichen werden können im Grunde nur die experimentellen Ergebnisse, die die maximale Auslaugbarkeit erreicht haben.
Tab. 6.17 Experimentelle Ergebnisse der Batch-Versuche mit unterschiedlichen Feststoff-Lösungsverhältnissen (s/f) zur Reaktion der Flugasche CA539 mit IP21-Lösung [Teil 1]

<table>
<thead>
<tr>
<th>Labor-Nr.</th>
<th>Probenbezeichnung</th>
<th>Zeit [d]</th>
<th>s / f [kg/kg]</th>
<th>Dichte [g/cm³]</th>
<th>pH-B</th>
<th>Temp. [°C]</th>
</tr>
</thead>
<tbody>
<tr>
<td>29151</td>
<td>CA 539 + IP21 7 Tage</td>
<td>7</td>
<td>1,116</td>
<td>1,26</td>
<td>6,46</td>
<td>25,10</td>
</tr>
<tr>
<td>29152</td>
<td>CA 539 + IP21 21 Tage</td>
<td>21</td>
<td>1,116</td>
<td>1,26</td>
<td>6,03</td>
<td>26,90</td>
</tr>
<tr>
<td>29153</td>
<td>CA 539 + IP21 35 Tage</td>
<td>35</td>
<td>1,101</td>
<td>1,26</td>
<td>5,95</td>
<td>24,50</td>
</tr>
<tr>
<td>29154</td>
<td>CA 539 + IP21 49 Tage</td>
<td>49</td>
<td>1,116</td>
<td>1,28</td>
<td>5,86</td>
<td>29,20</td>
</tr>
<tr>
<td>29155</td>
<td>CA 539 + IP21 63 Tage</td>
<td>63</td>
<td>1,106</td>
<td>1,26</td>
<td>5,72</td>
<td>25,30</td>
</tr>
<tr>
<td>29156</td>
<td>CA 539 + IP21 77 Tage</td>
<td>77</td>
<td>1,116</td>
<td>1,24</td>
<td>5,67</td>
<td>28,60</td>
</tr>
<tr>
<td>30374.01</td>
<td>CA 539 + IP21 28 Tage</td>
<td>28</td>
<td>0,556</td>
<td>1,26</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>30374.02</td>
<td>CA 539 + IP21 28 Tage</td>
<td>28</td>
<td>0,556</td>
<td>1,26</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>30374.03</td>
<td>CA 539 + IP21 56 Tage</td>
<td>56</td>
<td>0,556</td>
<td>1,26</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>30374.04</td>
<td>CA 539 + IP21 56 Tage</td>
<td>56</td>
<td>0,556</td>
<td>1,26</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>30374.05</td>
<td>CA 539 + IP21 84 Tage</td>
<td>84</td>
<td>0,556</td>
<td>1,26</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>30374.06</td>
<td>CA 539 + IP21 84 Tage</td>
<td>84</td>
<td>0,556</td>
<td>1,26</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>30375.01</td>
<td>CA 539 + IP21 28 Tage</td>
<td>28</td>
<td>0,370</td>
<td>1,26</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>30375.02</td>
<td>CA 539 + IP21 28 Tage</td>
<td>28</td>
<td>0,370</td>
<td>1,26</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>30375.03</td>
<td>CA 539 + IP21 56 Tage</td>
<td>56</td>
<td>0,370</td>
<td>1,26</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>30375.04</td>
<td>CA 539 + IP21 56 Tage</td>
<td>56</td>
<td>0,370</td>
<td>1,26</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>30375.05</td>
<td>CA 539 + IP21 84 Tage</td>
<td>84</td>
<td>0,370</td>
<td>1,26</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>30375.06</td>
<td>CA 539 + IP21 84 Tage</td>
<td>84</td>
<td>0,370</td>
<td>1,26</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>30376.01</td>
<td>CA 539 + IP21 28 Tage</td>
<td>28</td>
<td>0,278</td>
<td>1,26</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>30376.02</td>
<td>CA 539 + IP21 28 Tage</td>
<td>28</td>
<td>0,278</td>
<td>1,26</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>30376.03</td>
<td>CA 539 + IP21 56 Tage</td>
<td>56</td>
<td>0,278</td>
<td>1,26</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>30376.04</td>
<td>CA 539 + IP21 56 Tage</td>
<td>56</td>
<td>0,278</td>
<td>1,26</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>30376.05</td>
<td>CA 539 + IP21 84 Tage</td>
<td>84</td>
<td>0,278</td>
<td>1,26</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>30376.06</td>
<td>CA 539 + IP21 84 Tage</td>
<td>84</td>
<td>0,278</td>
<td>1,26</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

--- = nicht gemessen
Tab. 6.18 Experimentelle Ergebnisse der Batch-Versuche mit unterschiedlichen Feststoff-Lösungsverhältnissen (s/f) zur Reaktion der Flugasche CA539 mit IP21-Lösung [Teil 2]

<table>
<thead>
<tr>
<th>Labor-Nr.</th>
<th>Na (mol/kg H2O)</th>
<th>K (mol/kg H2O)</th>
<th>Ca (mol/kg H2O)</th>
<th>Mg (mol/kg H2O)</th>
<th>Cl (mol/kg H2O)</th>
<th>SO₄ (mol/kg H2O)</th>
<th>Cd (mol/kg H2O)</th>
<th>Pb (mol/kg H2O)</th>
<th>Zn (mol/kg H2O)</th>
</tr>
</thead>
<tbody>
<tr>
<td>29151</td>
<td>1.410</td>
<td>1.075</td>
<td>0.1502</td>
<td>2.627</td>
<td>8.028</td>
<td>0.015</td>
<td>1.67×10⁻³</td>
<td>1.8×10⁻²</td>
<td>1.6×10⁻³</td>
</tr>
<tr>
<td>29152</td>
<td>1.308</td>
<td>1.061</td>
<td>0.3110</td>
<td>2.601</td>
<td>8.167</td>
<td>0.008</td>
<td>2.22×10⁻³</td>
<td>2.07×10⁻²</td>
<td>5.58×10⁻³</td>
</tr>
<tr>
<td>29153</td>
<td>1.214</td>
<td>1.050</td>
<td>0.3631</td>
<td>2.826</td>
<td>8.403</td>
<td>0.007</td>
<td>2.41×10⁻³</td>
<td>2.30×10⁻²</td>
<td>1.1×10⁻²</td>
</tr>
<tr>
<td>29154</td>
<td>1.124</td>
<td>1.060</td>
<td>0.4541</td>
<td>2.806</td>
<td>8.537</td>
<td>0.006</td>
<td>3.22×10⁻³</td>
<td>3.15×10⁻²</td>
<td>1.8×10⁻²</td>
</tr>
<tr>
<td>29155</td>
<td>0.803</td>
<td>0.881</td>
<td>0.5923</td>
<td>3.049</td>
<td>8.934</td>
<td>0.003</td>
<td>2.64×10⁻³</td>
<td>2.51×10⁻²</td>
<td>2.14×10⁻²</td>
</tr>
<tr>
<td>29156</td>
<td>0.875</td>
<td>0.949</td>
<td>0.5830</td>
<td>2.998</td>
<td>9.145</td>
<td>0.005</td>
<td>3.19×10⁻³</td>
<td>2.73×10⁻²</td>
<td>2.58×10⁻²</td>
</tr>
<tr>
<td>30374.01</td>
<td>0.892</td>
<td>0.837</td>
<td>0.0201</td>
<td>3.537</td>
<td>8.729</td>
<td>0.077</td>
<td>9.71×10⁻⁴</td>
<td>1.12×10⁻²</td>
<td>5.36×10⁻³</td>
</tr>
<tr>
<td>30374.02</td>
<td>0.862</td>
<td>0.809</td>
<td>0.0206</td>
<td>3.426</td>
<td>8.521</td>
<td>0.070</td>
<td>1.01×10⁻³</td>
<td>9.95×10⁻³</td>
<td>4.37×10⁻³</td>
</tr>
<tr>
<td>30374.03</td>
<td>0.852</td>
<td>0.784</td>
<td>0.0465</td>
<td>3.439</td>
<td>8.730</td>
<td>0.030</td>
<td>1.20×10⁻³</td>
<td>1.18×10⁻²</td>
<td>7.77×10⁻³</td>
</tr>
<tr>
<td>30374.04</td>
<td>0.842</td>
<td>0.780</td>
<td>0.0444</td>
<td>3.487</td>
<td>8.827</td>
<td>0.032</td>
<td>1.15×10⁻³</td>
<td>1.20×10⁻²</td>
<td>7.75×10⁻³</td>
</tr>
<tr>
<td>30374.05</td>
<td>0.777</td>
<td>0.770</td>
<td>0.0545</td>
<td>3.474</td>
<td>8.698</td>
<td>0.023</td>
<td>1.10×10⁻³</td>
<td>1.15×10⁻²</td>
<td>8.95×10⁻³</td>
</tr>
<tr>
<td>30374.06</td>
<td>0.777</td>
<td>0.770</td>
<td>0.0643</td>
<td>3.550</td>
<td>8.782</td>
<td>0.020</td>
<td>1.12×10⁻³</td>
<td>1.20×10⁻²</td>
<td>9.34×10⁻³</td>
</tr>
<tr>
<td>30375.01</td>
<td>0.737</td>
<td>0.778</td>
<td>0.0080</td>
<td>3.872</td>
<td>9.117</td>
<td>0.186</td>
<td>6.96×10⁻⁴</td>
<td>8.65×10⁻³</td>
<td>4.38×10⁻³</td>
</tr>
<tr>
<td>30375.02</td>
<td>0.644</td>
<td>0.767</td>
<td>0.0073</td>
<td>4.099</td>
<td>9.317</td>
<td>0.198</td>
<td>5.24×10⁻⁴</td>
<td>8.91×10⁻³</td>
<td>4.93×10⁻³</td>
</tr>
<tr>
<td>30375.03</td>
<td>0.698</td>
<td>0.742</td>
<td>0.0117</td>
<td>3.833</td>
<td>9.044</td>
<td>0.123</td>
<td>8.06×10⁻⁴</td>
<td>8.59×10⁻³</td>
<td>6.46×10⁻³</td>
</tr>
<tr>
<td>30375.04</td>
<td>0.683</td>
<td>0.727</td>
<td>0.0092</td>
<td>3.924</td>
<td>9.148</td>
<td>0.154</td>
<td>7.66×10⁻⁴</td>
<td>8.68×10⁻³</td>
<td>6.20×10⁻³</td>
</tr>
<tr>
<td>30375.05</td>
<td>0.547</td>
<td>0.664</td>
<td>0.0102</td>
<td>4.128</td>
<td>9.370</td>
<td>0.104</td>
<td>7.27×10⁻⁴</td>
<td>9.72×10⁻³</td>
<td>8.46×10⁻³</td>
</tr>
<tr>
<td>30375.06</td>
<td>0.511</td>
<td>0.642</td>
<td>0.0119</td>
<td>4.132</td>
<td>9.155</td>
<td>0.083</td>
<td>7.87×10⁻⁴</td>
<td>9.90×10⁻³</td>
<td>9.16×10⁻³</td>
</tr>
<tr>
<td>30376.01</td>
<td>0.640</td>
<td>0.734</td>
<td>0.0057</td>
<td>4.085</td>
<td>9.304</td>
<td>0.248</td>
<td>5.46×10⁻⁴</td>
<td>7.07×10⁻³</td>
<td>4.47×10⁻³</td>
</tr>
<tr>
<td>30376.02</td>
<td>0.661</td>
<td>0.739</td>
<td>0.0058</td>
<td>4.076</td>
<td>9.209</td>
<td>0.250</td>
<td>5.77×10⁻⁴</td>
<td>7.22×10⁻³</td>
<td>4.29×10⁻³</td>
</tr>
<tr>
<td>30376.03</td>
<td>0.632</td>
<td>0.721</td>
<td>0.0065</td>
<td>3.971</td>
<td>9.069</td>
<td>0.206</td>
<td>6.04×10⁻⁴</td>
<td>7.08×10⁻³</td>
<td>5.55×10⁻³</td>
</tr>
<tr>
<td>30376.04</td>
<td>0.632</td>
<td>0.719</td>
<td>0.0064</td>
<td>4.023</td>
<td>9.240</td>
<td>0.215</td>
<td>6.07×10⁻⁴</td>
<td>7.27×10⁻³</td>
<td>5.77×10⁻³</td>
</tr>
<tr>
<td>30376.05</td>
<td>0.522</td>
<td>0.614</td>
<td>0.0058</td>
<td>4.146</td>
<td>9.103</td>
<td>0.180</td>
<td>5.76×10⁻⁴</td>
<td>7.54×10⁻³</td>
<td>7.36×10⁻³</td>
</tr>
<tr>
<td>30376.06</td>
<td>0.571</td>
<td>0.687</td>
<td>0.0079</td>
<td>4.124</td>
<td>9.339</td>
<td>0.172</td>
<td>5.96×10⁻⁴</td>
<td>7.35×10⁻³</td>
<td>7.19×10⁻³</td>
</tr>
</tbody>
</table>
Abb. 6.36 Zeitliche Entwicklung der Hauptelementgehalte der Lösungen in den Batch-Versuchen „Abfall CA539 mit IP21-Lösung“ bei einem Feststoff-Lösungsverhältnis von 0,278

Abb. 6.37 Zeitliche Entwicklung der Hauptelementgehalte der Lösungen in den Batch-Versuchen „Abfall CA539 mit IP21-Lösung“ bei einem Feststoff-Lösungsverhältnis von 0,370
Abb. 6.38 Zeitliche Entwicklung der Hauptelementgehalte der Lösungen in den Batch-Versuchen „Abfall CA539 mit IP21-Lösung“ bei einem Feststoff-Lösungsverhältnis von 0,556

Abb. 6.39 Zeitliche Entwicklung der Hauptelementgehalte der Lösungen in den Batch-Versuchen „Abfall CA539 mit IP21-Lösung“ bei einem Feststoff-Lösungsverhältnis von 1,112
Abb. 6.40 Zeitliche Entwicklung von Pb in den Lösungen der Batch-Versuche „Abfall CA539 mit IP21-Lösung“ bei den Feststoff-Lösungsverhältnissen von 0,278, 0,370, 0,556 und 1,112

Abb. 6.41 Zeitliche Entwicklung von Zn in den Lösungen der Batch-Versuche „Abfall CA539 mit IP21-Lösung“ bei den Feststoff-Lösungsverhältnissen von 0,278, 0,370, 0,556 und 1,112
Abb. 6.42 Zeitliche Entwicklung von Cd in den Lösungen der Batch-Versuche „Abfall CA539 mit IP21-Lösung“ bei den Feststoff-Lösungsverhältnissen von 0,278, 0,370, 0,556 und 1,112

6.2.3 CA539 - Vergleich der Ergebnisse aus LISA- und Batch-Versuchen

Das ist wohl auch hier der Grund, weshalb sich im LISA-Versuch die Lösungszusammensetzung über die Zeit wenig verändert, wogegen im Batch-Versuch die gemessenen Schwermetallgehalte stark ansteigen und am Ende der Versuche ein Ende der Auslaugung noch nicht erreicht ist (Abb. 6.44).
Abb. 6.43 Vergleich der zeitlichen Entwicklung der Hauptelemente in Lisa und Batch-Versuchen bei einem anfänglichen Feststoff-Lösungsverhältnis von 1,112

Abb. 6.44 Vergleich der zeitlichen Entwicklung der Pb-, Zn- und Cd-Gehalte aus Lisa und Batch-Versuchen bei einem anfänglichen Feststoff-Lösungsverhältnis von 1,112
In Analogie zu Kap. 6.1.4 wird auch für den Filterstaub CA539 eine vermutete Mineralzusammensetzung berechnet, die die Elektroneutralität erfüllt. Wegen anderer erkannter Festphasen ist die Ausgangslage geringfügig anders. Das Ergebnis zeigt Tab. 6.19.

Tab. 6.19 Umrechnung der Abfallzusammensetzung des Filterstaubs CA539 in hypothetische (vermutete) Mineralanteile

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Formel</th>
<th>Masse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rest Ca als Ca(OH)₂</td>
<td>Ca</td>
<td>2.123666 Ca(OH)₂</td>
</tr>
<tr>
<td>Rest C als Calzit</td>
<td>C</td>
<td>0,120592 Ca(CO₃)</td>
</tr>
<tr>
<td>Rest Cl⁻ als Sylvin</td>
<td>K</td>
<td>0,539174 KC</td>
</tr>
<tr>
<td>Rest K als KOH</td>
<td>K</td>
<td>0,968181 KOH</td>
</tr>
<tr>
<td>Alles Mg als Mg(OH)₂</td>
<td>Mg</td>
<td>0,708290 Mg(OH)₂</td>
</tr>
<tr>
<td>alles SO₄ als Anhydrit</td>
<td>Alles S als SO₄</td>
<td>1,188424 CaSO₄</td>
</tr>
<tr>
<td>Cl⁻ abzügl. CdCl₂ als Halit</td>
<td>Cl</td>
<td>1,913975 NaCl</td>
</tr>
<tr>
<td>Alles als Al(OH)₃</td>
<td>Al</td>
<td>0,339528 Al(OH)₃-Gibbsite</td>
</tr>
<tr>
<td>Alles als Quarz</td>
<td>Si</td>
<td>2,011857 Quartz_SiO₂</td>
</tr>
<tr>
<td>Auerbachs Salz</td>
<td>Pb</td>
<td>0,018798 NaPb₂(CO₃)₂(OH)</td>
</tr>
<tr>
<td>Alles als ZnO</td>
<td>Zn</td>
<td>0,383988 ZnO-aktiv</td>
</tr>
<tr>
<td>Alles als CdCl₂</td>
<td>Cd</td>
<td>0,004644 CdCl₂</td>
</tr>
<tr>
<td>Alles als Fe(OH)₃</td>
<td>Fe</td>
<td>0,319140 Fe(OH)₃</td>
</tr>
</tbody>
</table>

Durch Fettdruck hervorgehobene Phasen wurden mit RDA nachgewiesen.

Die anschließende Modellierung und Auswertung geschieht ebenfalls wie bereits in Kap. 6.1.4 beschrieben.

Abb. 6.45 bis Abb. 6.47 zeigen im oberen Teil die Gleichgewichtsmodellierung und im unteren Teil die Modellierung mit Unterdrückung einiger Mineralphasen.

6.2.4.1 Vergleich der experimentellen Ergebnisse des LISA-Versuchs mit der geochemischen Modellierung

Wie schon bei CA528 gelingt auch hier eine Anpassung für die Hauptelemente noch einigermaßen, für die Schwermetallgehalte aber ebenso wenig, da wieder nach wenigen Proben die Werte sich kaum noch ändern (Abb. 6.48 bis Abb. 6.51).
Abb. 6.45 Entwicklung der Hauptelemente in Lösung bei der Modellierung der Reaktion des Abfalls CA539 mit IP21 im zi-Intervall 0 bis 3 entsprechend 0 bis 3 kg Abfall pro 1 Liter Wasser in der Ausgangslösung
Oben: Gleichgewichtsmodellierung
Unten: Unterdrückung der Phasen Sphalerit, Simonkolleit, Willemit, K₂ZnCl₄, Na₂ZnCl₄·3H₂O, ZnO, Zn(OH)₂, Namuwit
Abb. 6.46 Entwicklung des pH-Wertes und des Wassergehaltes der Lösung bei der Modellierung der Reaktion des Abfalls CA539 mit IP21-Lösung im z_i-Intervall 0 bis 3 entsprechend 0 bis 3 kg Abfall pro Liter Wasser in der Ausgangslösung
Oben: Gleichgewichtsmodellierung
Unten: Unterdrückung der Phasen Sphalerit, Simonkolleit, Willemite, K$_2$ZnCl$_4$, Na$_2$ZnCl$_4$·3H$_2$O, ZnO, Zn(OH)$_2$, Namuwit
Abb. 6.47 Entwicklung Pb, Zn und Cd in Lösung bei der Modellierung (oben) der Reaktion des Abfalls CA539 mit IP21 im z_i-Intervall 0 bis 3 entsprechend 0 bis 3 kg Abfall pro 1 Liter Wasser in der Ausgangslösung
Oben: Gleichgewichtsmodellierung
Unten: Unterdrückung der Phasen Sphalerit, Simonkolleit, Willemit, K$_2$ZnCl$_4$, Na$_2$ZnCl$_4$-3H$_2$O, ZnO, Zn(OH)$_2$, Namuwit
(ACHTUNG! Die untere Skala für Pb, Zn zeigt das Zwanzigfache an!)
Abb. 6.48 Vergleich der Entwicklung der Hauptelemente in Lösung in Lisa-Versuchen und in der geochemischen Gleichgewichtsmodellierung

Abb. 6.49 Anpassung der Hauptelemente aus der geochemischen Modellierung an die experimentellen Ergebnisse
Abb. 6.50 Vergleich der Entwicklung der Pb-, Zn- und Cd-Gehalte in Lösung in Lisa-Versuchen und in der geochemischen Gleichgewichtsmodellierung

Abb. 6.51 Anpassung der Pb-, Zn- und Cd-Gehalte aus der geochemischen Modellierung an die experimentellen Ergebnisse
6.2.4.2 Vergleich der experimentellen Ergebnisse der Batch-Versuche mit der geochemischen Modellierung

Auch hier ist die Anpassung der Modellierung an die Ergebnisse der Batch-Versuche nach dem gleichen Verfahren erfolgt wie bei CA528 (Abb. 6.52 bis Abb. 6.55). Durch die elementspezifische Anpassung der s/f-Werte für die Schwermetalle Pb, Zn und Cd (Abb. 6.55) lassen sich hier die Versuchsergebnisse ebenfalls gut nachmodellieren.

Abb. 6.52 Vergleich der Entwicklung der Hauptelemente in Lösungen der Batch-Versuche und in der geochemischen Gleichgewichtsmodellierung
Abb. 6.53 Vergleich der Hauptelemente aus der angepassten geochemischen Modellierung mit den experimentellen Ergebnissen
Unterdrückung der Phasen Sphalerit, Simonkolleit, Willemit, K₂ZnCl₄, Na₂ZnCl₄·3H₂O, ZnO, Zn(OH)₂, Namuwit

Abb. 6.54 Entwicklung der Pb-, Zn- und Cd-Gehalte in Lösung in Batch-Versuchen und in der geochemischen Gleichgewichtsmodellierung
Abb. 6.55 Anpassung der Pb-, Zn- und Cd-Gehalte aus der geochemischen Modellierung an die experimentellen Ergebnisse
Unterdrückung der Phasen Sphalerit, Simonkolleit, Willemit, K₂ZnCl₄, Na₂ZnCl₄·3H₂O, ZnO, Zn(OH)₂, Namuwit

6.2.5 Ableitbare Aussagen aus der Anpassung der geochemischen Modellierung an die experimentellen Ergebnisse

Die Schlussfolgerungen aus der Anpassung sind die gleichen wie in Kap. 6.1.5: Der LISA-Versuch erfüllt nicht die Erwartungen, die Batch-Versuche lassen sich gut modellieren und aus der Anpassung ergeben sich die in Tab. 6.20 aufgeführten elementspezifischen Verfügbarkeiten.

Tab. 6.20 Elementspezifische Verfügbarkeiten der Schwermetalle Pb, Zn und Cd, abgeleitet aus der Anpassung der geochemischen Modellierung an die Batch-Versuche des Abfalls CA539 mit IP21-Lösung

<table>
<thead>
<tr>
<th>Element</th>
<th>Verfügbarkeit (84 Tage)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pb</td>
<td>71 %</td>
</tr>
<tr>
<td>Zn</td>
<td>7 %</td>
</tr>
<tr>
<td>Cd</td>
<td>57 %</td>
</tr>
</tbody>
</table>
6.3 Reaktion des Filterstaubs CA606 mit IP21-Lösung

Wie bereits in Kap. 6.2 „Reaktion des Filterstaubs CA539 mit IP21-Lösung“ geschieht auch hier die Darstellung der Ergebnisse der Versuche und der Modellierungen analog zu Kap. 6.1 „Reaktion der Flugasche CA528 mit IP21-Lösung“.

6.3.1 CA606 - Lisa-Versuche

Der LISA-Versuch mit CA606 und IP21-Lösung (LISA3) ist 105 Tage gelaufen. In regelmäßigen Abständen von jeweils 7 Tagen wurde eine Probe genommen und analysiert, zusammen 15 Proben. Die Ergebnisse der Lösungsanalytiken sind in Tab. 6.21 bis Tab. 6.26 dargestellt. Um die experimentellen Werte leichter mit den Ergebnissen der geochemischen Modellierung vergleichen zu können, wurden alle Elementgehalte in mol/kg$_{Wasser}$ angegeben.

Tab. 6.21 Experimentelle Ergebnisse des LISA-Versuchs zur Reaktion der Flugasche CA606 mit IP21-Lösung [Teil 1]

<table>
<thead>
<tr>
<th>Labor-Nr.</th>
<th>Probenbezeichnung</th>
<th>Zeit [d]</th>
<th>s / f [kg/kg]</th>
<th>Dichte [g/cm³]</th>
<th>pH-L</th>
<th>Temp. [°C]</th>
</tr>
</thead>
<tbody>
<tr>
<td>29180</td>
<td>CA 606+IP21 7 Tage</td>
<td>7</td>
<td>0,555</td>
<td>1,3650</td>
<td>5,92</td>
<td>27,4</td>
</tr>
<tr>
<td>29181</td>
<td>CA 606+IP21 14 Tage</td>
<td>14</td>
<td>0,568</td>
<td>1,3659</td>
<td>12,90</td>
<td>24,2</td>
</tr>
<tr>
<td>29182</td>
<td>CA 606+IP21 21 Tage</td>
<td>21</td>
<td>0,582</td>
<td>1,3662</td>
<td>5,53</td>
<td>25,9</td>
</tr>
<tr>
<td>29216</td>
<td>CA 606+IP21 28 Tage</td>
<td>28</td>
<td>0,596</td>
<td>1,3670</td>
<td>5,39</td>
<td>24,9</td>
</tr>
<tr>
<td>29217</td>
<td>CA 606+IP21 35 Tage</td>
<td>35</td>
<td>0,611</td>
<td>1,3664</td>
<td>5,21</td>
<td>24,9</td>
</tr>
<tr>
<td>29218</td>
<td>CA 606+IP21 42 Tage</td>
<td>42</td>
<td>0,627</td>
<td>1,3680</td>
<td>5,15</td>
<td>28,6</td>
</tr>
<tr>
<td>29234</td>
<td>CA 606+IP21 49 Tage</td>
<td>49</td>
<td>0,644</td>
<td>1,3674</td>
<td>5,17</td>
<td>25,7</td>
</tr>
<tr>
<td>29235</td>
<td>CA 606+IP21 56 Tage</td>
<td>56</td>
<td>0,663</td>
<td>1,3674</td>
<td>5,07</td>
<td>25,9</td>
</tr>
<tr>
<td>29236</td>
<td>CA 606+IP21 63 Tage</td>
<td>63</td>
<td>0,681</td>
<td>1,3666</td>
<td>5,00</td>
<td>27,6</td>
</tr>
<tr>
<td>29330</td>
<td>CA 606+IP21 70 Tage</td>
<td>70</td>
<td>0,700</td>
<td>1,3680</td>
<td>5,14</td>
<td>29,0</td>
</tr>
<tr>
<td>29331</td>
<td>CA 606+IP21 77 Tage</td>
<td>77</td>
<td>0,720</td>
<td>1,3674</td>
<td>4,95</td>
<td>25,5</td>
</tr>
<tr>
<td>29371</td>
<td>CA 606+IP21 84 Tage</td>
<td>84</td>
<td>0,743</td>
<td>1,3669</td>
<td>4,96</td>
<td>28,0</td>
</tr>
<tr>
<td>29372</td>
<td>CA 606+IP21 91 Tage</td>
<td>91</td>
<td>0,766</td>
<td>1,3677</td>
<td>4,92</td>
<td>26,1</td>
</tr>
<tr>
<td>29373</td>
<td>CA 606+IP21 98 Tage</td>
<td>98</td>
<td>0,791</td>
<td>1,3672</td>
<td>4,70</td>
<td>24,9</td>
</tr>
<tr>
<td>29422</td>
<td>CA 606+IP21 105 Tage</td>
<td>105</td>
<td>0,816</td>
<td>1,3684</td>
<td>4,49</td>
<td>27,5</td>
</tr>
</tbody>
</table>
Tab. 6.22 Experimentelle Ergebnisse des LISA-Versuchs zur Reaktion der Flugasche CA606 mit IP21-Lösung [Teil 2]

<table>
<thead>
<tr>
<th>Labor-Nr.</th>
<th>Na</th>
<th>K</th>
<th>Ca</th>
<th>Mg</th>
<th>Cl</th>
<th>SO₄</th>
<th>Cd</th>
<th>Pb</th>
<th>Zn</th>
</tr>
</thead>
<tbody>
<tr>
<td>29180</td>
<td>0,262</td>
<td>0,530</td>
<td>3,9180</td>
<td>1,475</td>
<td>11,230</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>29181</td>
<td>0,262</td>
<td>0,539</td>
<td>3,9311</td>
<td>1,391</td>
<td>11,268</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>29182</td>
<td>0,269</td>
<td>0,662</td>
<td>3,9223</td>
<td>1,394</td>
<td>11,296</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>29216</td>
<td>0,272</td>
<td>0,579</td>
<td>3,9343</td>
<td>1,428</td>
<td>11,377</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>29217</td>
<td>0,265</td>
<td>0,548</td>
<td>4,0021</td>
<td>1,387</td>
<td>11,421</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>29218</td>
<td>0,270</td>
<td>0,582</td>
<td>4,0610</td>
<td>1,398</td>
<td>11,454</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>29234</td>
<td>0,244</td>
<td>0,533</td>
<td>4,1036</td>
<td>1,242</td>
<td>11,431</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>29235</td>
<td>0,240</td>
<td>0,554</td>
<td>4,1488</td>
<td>1,315</td>
<td>11,448</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>29236</td>
<td>0,242</td>
<td>0,561</td>
<td>4,1138</td>
<td>1,313</td>
<td>11,395</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>29330</td>
<td>0,239</td>
<td>0,564</td>
<td>4,0607</td>
<td>1,311</td>
<td>11,405</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>29331</td>
<td>0,244</td>
<td>0,571</td>
<td>3,9640</td>
<td>1,333</td>
<td>11,367</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>29371</td>
<td>0,229</td>
<td>0,542</td>
<td>3,9141</td>
<td>1,270</td>
<td>11,176</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>29372</td>
<td>0,245</td>
<td>0,573</td>
<td>3,7573</td>
<td>1,336</td>
<td>11,360</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>29373</td>
<td>0,167</td>
<td>0,395</td>
<td>2,6592</td>
<td>0,921</td>
<td>10,937</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>29422</td>
<td>0,252</td>
<td>0,605</td>
<td>3,9575</td>
<td>1,351</td>
<td>11,515</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Tab. 6.23 Experimentelle Ergebnisse des LISA-Versuchs zur Reaktion der Flugasche CA606 mit IP21-Lösung [Teil 3]

<table>
<thead>
<tr>
<th>Labor-Nr.</th>
<th>Todvolumen [g]</th>
<th>Probe [g]</th>
<th>Todvolumen [cm³]</th>
<th>Probe [cm³]</th>
<th>Σ Volumen [cm³]</th>
<th>Feststoff [g]</th>
<th>Lösung [cm³]</th>
<th>s / f [g/cm³]</th>
</tr>
</thead>
<tbody>
<tr>
<td>29180</td>
<td>5,2</td>
<td>5,5</td>
<td>3,8</td>
<td>4,0</td>
<td>7,8</td>
<td>249,6</td>
<td>340,2</td>
<td>0,7</td>
</tr>
<tr>
<td>29181</td>
<td>5,0</td>
<td>5,5</td>
<td>3,6</td>
<td>4,0</td>
<td>7,6</td>
<td>249,6</td>
<td>332,5</td>
<td>0,8</td>
</tr>
<tr>
<td>29182</td>
<td>5,0</td>
<td>5,1</td>
<td>3,7</td>
<td>3,7</td>
<td>7,4</td>
<td>249,6</td>
<td>325,1</td>
<td>0,8</td>
</tr>
<tr>
<td>29216</td>
<td>4,7</td>
<td>5,5</td>
<td>3,4</td>
<td>4,1</td>
<td>7,5</td>
<td>249,6</td>
<td>317,6</td>
<td>0,8</td>
</tr>
<tr>
<td>29217</td>
<td>4,9</td>
<td>5,2</td>
<td>3,6</td>
<td>3,8</td>
<td>7,4</td>
<td>249,6</td>
<td>310,2</td>
<td>0,8</td>
</tr>
<tr>
<td>29218</td>
<td>5,2</td>
<td>5,6</td>
<td>3,8</td>
<td>4,1</td>
<td>7,9</td>
<td>249,6</td>
<td>302,3</td>
<td>0,8</td>
</tr>
<tr>
<td>29234</td>
<td>5,2</td>
<td>5,6</td>
<td>3,8</td>
<td>4,1</td>
<td>7,9</td>
<td>249,6</td>
<td>294,4</td>
<td>0,8</td>
</tr>
<tr>
<td>29235</td>
<td>4,8</td>
<td>5,2</td>
<td>3,5</td>
<td>3,8</td>
<td>7,3</td>
<td>249,6</td>
<td>287,1</td>
<td>0,9</td>
</tr>
<tr>
<td>29236</td>
<td>5,0</td>
<td>5,3</td>
<td>3,7</td>
<td>3,9</td>
<td>7,5</td>
<td>249,6</td>
<td>279,6</td>
<td>0,9</td>
</tr>
<tr>
<td>29330</td>
<td>4,9</td>
<td>5,1</td>
<td>3,6</td>
<td>3,7</td>
<td>7,3</td>
<td>249,6</td>
<td>272,3</td>
<td>0,9</td>
</tr>
<tr>
<td>29331</td>
<td>5,2</td>
<td>5,1</td>
<td>3,8</td>
<td>3,7</td>
<td>7,5</td>
<td>249,6</td>
<td>264,7</td>
<td>0,9</td>
</tr>
<tr>
<td>29371</td>
<td>5,0</td>
<td>5,4</td>
<td>3,7</td>
<td>4,0</td>
<td>7,6</td>
<td>249,6</td>
<td>257,1</td>
<td>1,0</td>
</tr>
<tr>
<td>29372</td>
<td>5,0</td>
<td>5,1</td>
<td>3,6</td>
<td>3,7</td>
<td>7,3</td>
<td>249,6</td>
<td>249,8</td>
<td>1,0</td>
</tr>
<tr>
<td>29373</td>
<td>4,9</td>
<td>5,0</td>
<td>3,6</td>
<td>3,6</td>
<td>7,2</td>
<td>249,6</td>
<td>242,6</td>
<td>1,0</td>
</tr>
<tr>
<td>29422</td>
<td>5,0</td>
<td>5,0</td>
<td>3,6</td>
<td>3,7</td>
<td>7,3</td>
<td>249,6</td>
<td>235,3</td>
<td>1,1</td>
</tr>
</tbody>
</table>
Tab. 6.24 Experimentelle Ergebnisse des LISA-Versuchs zur Reaktion der Flugasche CA606 mit IP21-Lösung [Teil 4]

<table>
<thead>
<tr>
<th>Labor-Nr.</th>
<th>Austrag Cd [mg/kg]</th>
<th>Σ Austrag Cd [mg/kg]</th>
<th>c(s) / c(f) für Cd [mg/kg]/[mg/kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>29180</td>
<td>1,77</td>
<td>1,77</td>
<td>2,19</td>
</tr>
<tr>
<td>29181</td>
<td>2,00</td>
<td>3,76</td>
<td>1,86</td>
</tr>
<tr>
<td>29182</td>
<td>1,99</td>
<td>5,76</td>
<td>1,77</td>
</tr>
<tr>
<td>29216</td>
<td>2,11</td>
<td>7,86</td>
<td>1,65</td>
</tr>
<tr>
<td>29217</td>
<td>2,08</td>
<td>9,94</td>
<td>1,62</td>
</tr>
<tr>
<td>29218</td>
<td>2,26</td>
<td>12,21</td>
<td>1,56</td>
</tr>
<tr>
<td>29234</td>
<td>2,21</td>
<td>14,42</td>
<td>1,56</td>
</tr>
<tr>
<td>29235</td>
<td>2,06</td>
<td>16,48</td>
<td>1,49</td>
</tr>
<tr>
<td>29236</td>
<td>2,13</td>
<td>18,61</td>
<td>1,47</td>
</tr>
<tr>
<td>29330</td>
<td>2,11</td>
<td>20,72</td>
<td>1,42</td>
</tr>
<tr>
<td>29331</td>
<td>2,12</td>
<td>22,84</td>
<td>1,41</td>
</tr>
<tr>
<td>29371</td>
<td>2,15</td>
<td>24,99</td>
<td>1,39</td>
</tr>
<tr>
<td>29372</td>
<td>2,06</td>
<td>27,05</td>
<td>1,35</td>
</tr>
<tr>
<td>29373</td>
<td>2,06</td>
<td>29,12</td>
<td>1,36</td>
</tr>
<tr>
<td>29422</td>
<td>2,18</td>
<td>31,29</td>
<td>1,20</td>
</tr>
</tbody>
</table>

Tab. 6.25 Experimentelle Ergebnisse des LISA-Versuchs zur Reaktion der Flugasche CA606 mit IP21-Lösung [Teil 5]

<table>
<thead>
<tr>
<th>Labor-Nr.</th>
<th>Austrag Pb [mg/kg]</th>
<th>Σ Austrag Pb [mg/kg]</th>
<th>c(s) / c(f) für Pb [mg/kg]/[mg/kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>29180</td>
<td>3,43</td>
<td>3,43</td>
<td>95,0</td>
</tr>
<tr>
<td>29181</td>
<td>4,03</td>
<td>7,46</td>
<td>79,0</td>
</tr>
<tr>
<td>29182</td>
<td>4,58</td>
<td>12,04</td>
<td>67,2</td>
</tr>
<tr>
<td>29216</td>
<td>5,82</td>
<td>17,85</td>
<td>53,3</td>
</tr>
<tr>
<td>29217</td>
<td>6,33</td>
<td>24,18</td>
<td>48,3</td>
</tr>
<tr>
<td>29218</td>
<td>7,18</td>
<td>31,36</td>
<td>45,7</td>
</tr>
<tr>
<td>29234</td>
<td>7,50</td>
<td>38,86</td>
<td>43,6</td>
</tr>
<tr>
<td>29235</td>
<td>6,67</td>
<td>45,53</td>
<td>44,8</td>
</tr>
<tr>
<td>29236</td>
<td>7,26</td>
<td>52,79</td>
<td>42,7</td>
</tr>
<tr>
<td>29330</td>
<td>8,45</td>
<td>61,24</td>
<td>35,9</td>
</tr>
<tr>
<td>29331</td>
<td>9,01</td>
<td>70,25</td>
<td>34,5</td>
</tr>
<tr>
<td>29371</td>
<td>10,37</td>
<td>80,63</td>
<td>30,5</td>
</tr>
<tr>
<td>29372</td>
<td>10,12</td>
<td>90,75</td>
<td>30,1</td>
</tr>
<tr>
<td>29373</td>
<td>10,78</td>
<td>101,53</td>
<td>29,1</td>
</tr>
<tr>
<td>29422</td>
<td>10,78</td>
<td>112,31</td>
<td>27,8</td>
</tr>
</tbody>
</table>
Tab. 6.26 Experimentelle Ergebnisse des LISA-Versuchs zur Reaktion der Flugasche CA606 mit IP21-Lösung [Teil 6]

<table>
<thead>
<tr>
<th>Labor-Nr.</th>
<th>Austrag Zn [mg/kg]</th>
<th>Σ Austrag Zn [mg/kg]</th>
<th>c(s) / c(f) für Zn [mg/kg]/[mg/kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>29180</td>
<td>2,1</td>
<td>2,1</td>
<td>653,6</td>
</tr>
<tr>
<td>29181</td>
<td>6,5</td>
<td>8,5</td>
<td>206,1</td>
</tr>
<tr>
<td>29182</td>
<td>6,3</td>
<td>14,8</td>
<td>204,3</td>
</tr>
<tr>
<td>29216</td>
<td>5,7</td>
<td>20,5</td>
<td>229,0</td>
</tr>
<tr>
<td>29217</td>
<td>4,7</td>
<td>25,2</td>
<td>269,2</td>
</tr>
<tr>
<td>29218</td>
<td>5,3</td>
<td>30,5</td>
<td>260,2</td>
</tr>
<tr>
<td>29234</td>
<td>4,8</td>
<td>35,3</td>
<td>284,1</td>
</tr>
<tr>
<td>29235</td>
<td>4,2</td>
<td>39,5</td>
<td>299,5</td>
</tr>
<tr>
<td>29236</td>
<td>- - -</td>
<td>43,8</td>
<td>- - -</td>
</tr>
<tr>
<td>29330</td>
<td>- - -</td>
<td>47,9</td>
<td>- - -</td>
</tr>
<tr>
<td>29331</td>
<td>- - -</td>
<td>51,9</td>
<td>- - -</td>
</tr>
<tr>
<td>29371</td>
<td>3,9</td>
<td>55,8</td>
<td>343,9</td>
</tr>
<tr>
<td>29372</td>
<td>3,6</td>
<td>59,3</td>
<td>357,0</td>
</tr>
<tr>
<td>29373</td>
<td>3,5</td>
<td>62,8</td>
<td>379,5</td>
</tr>
<tr>
<td>29422</td>
<td>3,9</td>
<td>66,7</td>
<td>328,2</td>
</tr>
</tbody>
</table>

Abb. 6.56 zeigt den Lösungsaustausch infolge der Probennahme und das sich dadurch verändernde Feststoff-Lösungs-Verhältnis (s/f). Der Lösungsaustausch wurde in % des ursprünglich eingesetzten Lösungsvolumens dargestellt. Der Versuch musste beendet werden, als keine Lösung mehr ausgepresst werden konnte. Zu diesem Zeitpunkt waren von dem eingesetzten Lösungsvolumen knapp 35 % für die Probennahme verbraucht. Es ließ sich keine weitere Lösung auspressen, weil durch die Reaktion des Abfalls mit der Lösung der Abfall ausgehärtet war. Das in Kap. 6.1.1 zu Abb. 6.1 ausgeführte gilt hier ebenso.

Abb. 6.57 zeigt die Entwicklung des s/f-Verhältnisses über die Zeit, das sich durch die sukzessiven Probennahmen ständig vergrößerte. Das s/f-Verhältnis in kg/kg H₂O in Lösung entspricht dem z, in der Modellierung für den Fall eines vollständigen Gleichgewichts und eines konstanten Wassergehalts in der Lösung. Davon kann jedoch in den Experimenten nicht ausgegangen werden.

Abb. 6.58 zeigt die Entwicklung der Dichte der Lösung und der Wassergehalte in Lösung mit fortschreitender Reaktionszeit. In Abb. 6.59 sind die Haupelementgehalte

Bei der Darstellung der pH-Werte (Abb. 6.60) fällt auf, dass der Messwert nach 14 Tagen mit 12,8 ein ziemlich hohes Maximum erreicht und danach wieder innerhalb kurzer Zeit unter 6 sinkt. Dieser hohe pH-Wert kommt durch den hohen Anteil an Ca in der Probe (Tab. 6.22) zustande. Der Sulfatgehalt der IP21-Lösung reicht nicht aus, diesen durch Ausfällung von Gips gemäß Gleichung 3 spürbar zu senken.
Abb. 6.56 Kumulierter relativer Lösungsausstrag aus dem LISA-Versuch infolge wiederverholter Probennahme;
Oben: Darstellung über die Zeit
Unten: Darstellung des sich verändernden Feststoff-Lösungsverhältnisses
Abb. 6.57 Zeitliche Entwicklung der Feststoff-Lösungsverhältnisse im Lisa-Versuch „Abfall CA606 mit IP21-Lösung“

Abb. 6.58 Entwicklung der Lösungsdichte und der Wassergehalte in der Lösung im Lisa-Versuch „Abfall CA606 mit IP21-Lösung“ mit fortschreitender Reaktionszeit und Probennahme
Abb. 6.59 Zeitliche Entwicklung der Hauptelementgehalte in der Lösung im Lisa-Versuch „Abfall CA606 mit IP21-Lösung“

Abb. 6.60 Zeitliche Entwicklung des pH-Wertes in der Lösung im Lisa-Versuch „Abfall CA606 mit IP21-Lösung“
Abb. 6.61 Zeitliche Entwicklung der Schwermetallgehalte in der Lösung im Lisa-Versuch „Abfall CA606 mit IP21-Lösung“

Abb. 6.62 Zeitliche Entwicklung Kumulierter Austrag von Schwermetallen aus dem Abfall in die Lösung im Lisa-Versuch „Abfall CA606 mit IP21-Lösung“
Abb. 6.63 Zeitliche Entwicklung der elementspezifischen Auslaugbarkeiten der Schwermetalle Pb, Zn und Cd im Lisa-Versuch „Abfall CA606 mit IP21-Lösung“

6.3.2 CA606 - Batch-Versuche

Die Auslaugreaktion des Abfalls CA606 mit IP21-Lösung wurde zum Vergleich mit den Ergebnissen der Lisa-Versuche auch in Batch-Versuchen mit unterschiedlichen Feststoff-Lösungsverhältnissen durchgeführt (Tab. 6.28) und die Lösungszusammensetzungen nach 7, 21, 28, 35, 49, 56, 63, 77 und 84 Tagen (Abb. 6.64 bis Abb. 6.70) bei den untersuchten s/f von 0,156, 0,208, 0,278 und 0,556 analysiert. Besonders aus Abb. 6.68 wird deutlich, dass bei den niedrigen s/f-Verhältnissen relativ schnell eine weitestgehende Auslaugung der Schwermetalle erreicht wird, während beim größten Verhältnis von 0,556 das Maximum noch nicht erreicht wurde. Da jeder Batch-Versuch doppelt ausgeführt wurde, ist sichergestellt, dass diese Aussagen belastbar sind. Mit der Modellierung verglichen werden können im Grunde nur die experimentellen Ergebnisse, die die maximale Auslaugbarkeit erreicht haben.
Tab. 6.27 Experimentelle Ergebnisse der Batch-Versuche mit unterschiedlichen Feststoff-Lösungsverhältnissen (s/f) zur Reaktion der Flugasche CA606 mit IP21-Lösung [Teil 1]

<table>
<thead>
<tr>
<th>Labor-Nr.</th>
<th>Probenbezeichnung</th>
<th>Zeit [d]</th>
<th>s / f [kg/kg]</th>
<th>Dichte [g/cm³]</th>
<th>pH-B</th>
<th>Temp. [°C]</th>
</tr>
</thead>
<tbody>
<tr>
<td>29173</td>
<td>CA 606+IP21 7 Tage</td>
<td>7</td>
<td>0,560</td>
<td>1,3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>29174</td>
<td>CA 606+IP21 21 Tage</td>
<td>21</td>
<td>0,560</td>
<td>1,3, 5,75</td>
<td>25,60</td>
<td></td>
</tr>
<tr>
<td>29175</td>
<td>CA 606+IP21 35 Tage</td>
<td>35</td>
<td>0,557</td>
<td>1,35, 6,07</td>
<td>25,60</td>
<td></td>
</tr>
<tr>
<td>29176</td>
<td>CA 606+IP21 49 Tage</td>
<td>49</td>
<td>0,534</td>
<td>1,35, 6,09</td>
<td>26,30</td>
<td></td>
</tr>
<tr>
<td>29177</td>
<td>CA 606+IP21 63 Tage</td>
<td>63</td>
<td>0,557</td>
<td>1,36, 5,76</td>
<td>27,30</td>
<td></td>
</tr>
<tr>
<td>29178</td>
<td>CA 606+IP21 77 Tage</td>
<td>77</td>
<td>0,567</td>
<td>1,36, 5,85</td>
<td>24,90</td>
<td></td>
</tr>
<tr>
<td>30377.01</td>
<td>CA 606+IP21 28 Tage</td>
<td>28</td>
<td>0,278</td>
<td>1,32</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>30377.02</td>
<td>CA 606+IP21 28 Tage</td>
<td>28</td>
<td>0,278</td>
<td>1,31</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>30377.03</td>
<td>CA 606+IP21 56 Tage</td>
<td>56</td>
<td>0,278</td>
<td>1,31</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>30377.04</td>
<td>CA 606+IP21 56 Tage</td>
<td>56</td>
<td>0,278</td>
<td>1,31</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>30377.05</td>
<td>CA 606+IP21 84 Tage</td>
<td>84</td>
<td>0,278</td>
<td>1,31</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>30377.06</td>
<td>CA 606+IP21 84 Tage</td>
<td>84</td>
<td>0,278</td>
<td>1,31</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>30378.01</td>
<td>CA 606+IP21 28 Tage</td>
<td>28</td>
<td>0,208</td>
<td>1,31</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>30378.02</td>
<td>CA 606+IP21 28 Tage</td>
<td>28</td>
<td>0,208</td>
<td>1,3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>30378.03</td>
<td>CA 606+IP21 56 Tage</td>
<td>56</td>
<td>0,208</td>
<td>1,31</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>30378.04</td>
<td>CA 606+IP21 56 Tage</td>
<td>56</td>
<td>0,208</td>
<td>1,31</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>30378.05</td>
<td>CA 606+IP21 84 Tage</td>
<td>84</td>
<td>0,208</td>
<td>1,3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>30378.06</td>
<td>CA 606+IP21 84 Tage</td>
<td>84</td>
<td>0,208</td>
<td>1,19</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>30379.01</td>
<td>CA 606+IP21 28 Tage</td>
<td>28</td>
<td>0,156</td>
<td>1,29</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>30379.02</td>
<td>CA 606+IP21 28 Tage</td>
<td>28</td>
<td>0,156</td>
<td>1,29</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>30379.03</td>
<td>CA 606+IP21 56 Tage</td>
<td>56</td>
<td>0,156</td>
<td>1,29</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>30379.04</td>
<td>CA 606+IP21 56 Tage</td>
<td>56</td>
<td>0,156</td>
<td>1,29</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>30379.05</td>
<td>CA 606+IP21 84 Tage</td>
<td>84</td>
<td>0,156</td>
<td>1,28</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>30379.06</td>
<td>CA 606+IP21 84 Tage</td>
<td>84</td>
<td>0,156</td>
<td>1,29</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

- - - = nicht gemessen
Tab. 6.28 Experimentelle Ergebnisse der Batch-Versuche mit unterschiedlichen
Feststoff-Lösungsverhältnissen (s/f) zur Reaktion der Flugasche CA606
mit IP21-Lösung [Teil 2]

<table>
<thead>
<tr>
<th>Labor-Nr.</th>
<th>Na</th>
<th>K</th>
<th>Ca</th>
<th>Mg</th>
<th>Cl</th>
<th>SO₄</th>
<th>Cd</th>
<th>Pb</th>
<th>Zn</th>
</tr>
</thead>
<tbody>
<tr>
<td>29173</td>
<td>0,420</td>
<td>0,917</td>
<td>7,3408</td>
<td>2,112</td>
<td>39,187</td>
<td>- - -</td>
<td>6,52·10⁻⁰⁴</td>
<td>1,4·10⁻⁰³</td>
<td>2,89·10⁻⁰³</td>
</tr>
<tr>
<td>29174</td>
<td>0,419</td>
<td>1,018</td>
<td>7,6125</td>
<td>2,199</td>
<td>40,277</td>
<td>- - -</td>
<td>7,89·10⁻⁰⁴</td>
<td>3,84·10⁻⁰³</td>
<td>3,98·10⁻⁰³</td>
</tr>
<tr>
<td>29175</td>
<td>0,246</td>
<td>0,566</td>
<td>4,4680</td>
<td>1,267</td>
<td>12,246</td>
<td>- - -</td>
<td>5,78·10⁻⁰⁴</td>
<td>8,23·10⁻⁰³</td>
<td>1,97·10⁻⁰³</td>
</tr>
<tr>
<td>29176</td>
<td>0,249</td>
<td>0,511</td>
<td>4,0260</td>
<td>1,462</td>
<td>11,679</td>
<td>- - -</td>
<td>6,12·10⁻⁰⁴</td>
<td>1,27·10⁻⁰²</td>
<td>1,81·10⁻⁰³</td>
</tr>
<tr>
<td>29177</td>
<td>0,256</td>
<td>0,602</td>
<td>4,2952</td>
<td>1,455</td>
<td>12,037</td>
<td>- - -</td>
<td>1,25·10⁻⁰³</td>
<td>2,25·10⁻⁰²</td>
<td>3,07·10⁻⁰³</td>
</tr>
<tr>
<td>29178</td>
<td>0,223</td>
<td>0,467</td>
<td>4,1224</td>
<td>1,297</td>
<td>11,471</td>
<td>- - -</td>
<td>1,24·10⁻⁰³</td>
<td>2,64·10⁻⁰²</td>
<td>2,51·10⁻⁰³</td>
</tr>
<tr>
<td>30377.01</td>
<td>0,345</td>
<td>0,434</td>
<td>1,9066</td>
<td>2,684</td>
<td>10,035</td>
<td>0,001</td>
<td>4,51·10⁻⁰⁴</td>
<td>3,44·10⁻⁰³</td>
<td>1,85·10⁻⁰³</td>
</tr>
<tr>
<td>30377.02</td>
<td>0,350</td>
<td>0,431</td>
<td>1,7467</td>
<td>2,764</td>
<td>9,999</td>
<td>- - -</td>
<td>4,54·10⁻⁰⁴</td>
<td>3,83·10⁻⁰³</td>
<td>1,81·10⁻⁰³</td>
</tr>
<tr>
<td>30377.03</td>
<td>0,352</td>
<td>0,468</td>
<td>1,8202</td>
<td>2,760</td>
<td>10,067</td>
<td>- - -</td>
<td>6,81·10⁻⁰⁴</td>
<td>8,10·10⁻⁰³</td>
<td>2,02·10⁻⁰³</td>
</tr>
<tr>
<td>30377.04</td>
<td>0,353</td>
<td>0,456</td>
<td>1,7793</td>
<td>2,807</td>
<td>10,277</td>
<td>- - -</td>
<td>5,30·10⁻⁰⁴</td>
<td>4,62·10⁻⁰³</td>
<td>1,85·10⁻⁰³</td>
</tr>
<tr>
<td>30377.05</td>
<td>0,329</td>
<td>0,387</td>
<td>1,8037</td>
<td>2,778</td>
<td>10,188</td>
<td>- - -</td>
<td>6,52·10⁻⁰⁴</td>
<td>9,98·10⁻⁰³</td>
<td>1,36·10⁻⁰³</td>
</tr>
<tr>
<td>30377.06</td>
<td>0,336</td>
<td>0,388</td>
<td>1,7648</td>
<td>2,820</td>
<td>10,113</td>
<td>- - -</td>
<td>5,75·10⁻⁰⁴</td>
<td>6,13·10⁻⁰³</td>
<td>1,34·10⁻⁰³</td>
</tr>
<tr>
<td>30378.01</td>
<td>0,376</td>
<td>0,453</td>
<td>1,5177</td>
<td>2,969</td>
<td>9,949</td>
<td>- - -</td>
<td>4,95·10⁻⁰⁴</td>
<td>5,56·10⁻⁰³</td>
<td>1,66·10⁻⁰³</td>
</tr>
<tr>
<td>30378.02</td>
<td>0,385</td>
<td>0,444</td>
<td>1,2741</td>
<td>3,153</td>
<td>9,922</td>
<td>- - -</td>
<td>3,85·10⁻⁰⁴</td>
<td>3,35·10⁻⁰³</td>
<td>1,51·10⁻⁰³</td>
</tr>
<tr>
<td>30378.03</td>
<td>0,381</td>
<td>0,455</td>
<td>1,2207</td>
<td>3,181</td>
<td>10,452</td>
<td>- - -</td>
<td>4,51·10⁻⁰⁴</td>
<td>4,66·10⁻⁰³</td>
<td>1,55·10⁻⁰³</td>
</tr>
<tr>
<td>30378.04</td>
<td>0,361</td>
<td>0,408</td>
<td>1,2022</td>
<td>3,283</td>
<td>10,296</td>
<td>- - -</td>
<td>4,83·10⁻⁰⁴</td>
<td>3,54·10⁻⁰³</td>
<td>1,83·10⁻⁰³</td>
</tr>
<tr>
<td>30378.05</td>
<td>0,331</td>
<td>0,339</td>
<td>1,2581</td>
<td>3,179</td>
<td>10,609</td>
<td>- - -</td>
<td>- - -</td>
<td>- - -</td>
<td>- - -</td>
</tr>
<tr>
<td>30378.06</td>
<td>0,266</td>
<td>0,259</td>
<td>1,0429</td>
<td>2,630</td>
<td>1,069</td>
<td>- - -</td>
<td>- - -</td>
<td>- - -</td>
<td>- - -</td>
</tr>
<tr>
<td>30379.01</td>
<td>0,404</td>
<td>0,445</td>
<td>0,7599</td>
<td>3,353</td>
<td>9,504</td>
<td>- - -</td>
<td>2,97·10⁻⁰⁴</td>
<td>1,82·10⁻⁰³</td>
<td>1,17·10⁻⁰³</td>
</tr>
<tr>
<td>30379.02</td>
<td>0,407</td>
<td>0,452</td>
<td>0,7535</td>
<td>3,347</td>
<td>9,521</td>
<td>- - -</td>
<td>3,04·10⁻⁰⁴</td>
<td>2,07·10⁻⁰³</td>
<td>1,16·10⁻⁰³</td>
</tr>
<tr>
<td>30379.03</td>
<td>0,395</td>
<td>0,458</td>
<td>0,7955</td>
<td>3,386</td>
<td>9,550</td>
<td>- - -</td>
<td>3,37·10⁻⁰⁴</td>
<td>2,91·10⁻⁰³</td>
<td>1,32·10⁻⁰³</td>
</tr>
<tr>
<td>30379.04</td>
<td>0,382</td>
<td>0,441</td>
<td>0,8040</td>
<td>3,433</td>
<td>9,625</td>
<td>- - -</td>
<td>3,05·10⁻⁰⁴</td>
<td>2,14·10⁻⁰³</td>
<td>1,34·10⁻⁰³</td>
</tr>
<tr>
<td>30379.05</td>
<td>0,375</td>
<td>0,383</td>
<td>0,5611</td>
<td>3,405</td>
<td>9,859</td>
<td>- - -</td>
<td>5,67·10⁻⁰⁴</td>
<td>7,11·10⁻⁰³</td>
<td>1,69·10⁻⁰³</td>
</tr>
<tr>
<td>30379.06</td>
<td>0,357</td>
<td>0,346</td>
<td>0,8275</td>
<td>3,436</td>
<td>9,825</td>
<td>- - -</td>
<td>3,20·10⁻⁰⁴</td>
<td>3,51·10⁻⁰³</td>
<td>1,03·10⁻⁰³</td>
</tr>
</tbody>
</table>
Abb. 6.64 Zeitliche Entwicklung der Hauptelementgehalte der Lösungen in den Batch-Versuchen „Abfall CA606 mit IP21-Lösung“ bei einem Feststoff-Lösungsverhältnis von 0,156

Abb. 6.65 Zeitliche Entwicklung der Hauptelementgehalte der Lösungen in den Batch-Versuchen „Abfall CA606 mit IP21-Lösung“ bei einem Feststoff-Lösungsverhältnis von 0,208
Abb. 6.66 Zeitliche Entwicklung der Hauptelementgehalte der Lösungen in den Batch-Versuchen „Abfall CA606 mit IP21-Lösung“ bei einem Feststoff-Lösungsverhältnis von 0,278

Abb. 6.67 Zeitliche Entwicklung der Hauptelementgehalte der Lösungen in den Batch-Versuchen „Abfall CA606 mit IP21-Lösung“ bei einem Feststoff-Lösungsverhältnis von 0,556
Abb. 6.68 Zeitliche Entwicklung von Pb in den Lösungen der Batch-Versuche „Abfall CA606 mit IP21-Lösung“ bei den Feststoff-Lösungsverhältnissen von 0,156, 0,208, 0,278 und 0,556

Abb. 6.69 Zeitliche Entwicklung von Zn in den Lösungen der Batch-Versuche „Abfall CA606 mit IP21-Lösung“ bei den Feststoff-Lösungsverhältnissen von 0,156, 0,208, 0,278 und 0,556
Abb. 6.70 Zeitliche Entwicklung von Cd in den Lösungen der Batch-Versuche „Abfall CA606 mit IP21-Lösung“ bei den Feststoff-Lösungsverhältnissen von 0,156, 0,208, 0,278 und 0,556

6.3.3 CA606 - Vergleich der Ergebnisse aus LISA- und Batch-Versuchen

Das ist wohl auch hier der Grund, weshalb sich im LISA-Versuch die Lösungszusammensetzung über die Zeit wenig verändert, wogegen im Batch-Versuch die gemessenen Schwermetallgehalte stark ansteigen und am Ende der Versuche ein Ende der Auslaugung noch nicht erreicht ist (Abb. 6.72).
Abb. 6.71 Vergleich der zeitlichen Entwicklung der Hauptelemente in Lisa und Batch-Versuchen bei einem anfänglichen Feststoff-Lösungsverhältnis von 0,556

Abb. 6.72 Vergleich der zeitlichen Entwicklung der Pb-, Zn- und Cd-Gehalte aus Lisa und Batch-Versuchen bei einem anfänglichen Feststoff-Lösungsverhältnis von 0,556
6.3.4 CA606 - Geochemische Modellierung und Vergleich mit experimentellen Ergebnissen

Die Vorgehensweise ist auch hier wieder die gleiche, wie sie in Kap. 6.1.4 bei der Abfallprobe CA528 bereits ausführlich beschrieben wurden. Tab. 6.29 zeigt wieder die unter der Elektroneutralitätsbedingung berechnete vermutete Phasenzusammensetzung, die sich auch hier wieder wegen anderer erkannter Phasen geringfügig unterscheidet.

Tab. 6.29 Umrechnung der Abfallzusammensetzung des Filterstaubs CA606 in hypothetische (vermutete) Mineralanteile

<table>
<thead>
<tr>
<th>Phasenbestandteil</th>
<th>Molanteil</th>
<th>Molkomponenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rest Ca als Ca(OH)₂</td>
<td>0,322595</td>
<td>Ca(OH)₂</td>
</tr>
<tr>
<td>Rest C als Calzit</td>
<td>0,555681</td>
<td>Ca(CO₃)₂</td>
</tr>
<tr>
<td>Rest Cl als Calciumchlorid-Hydroxid</td>
<td>2,334101</td>
<td>CaCl₂·Ca(OH)₂·H₂O</td>
</tr>
<tr>
<td>Rest K als KCl</td>
<td>0,513143</td>
<td>K(OH)</td>
</tr>
<tr>
<td>(Alles als MgCl₂)</td>
<td>0,326065</td>
<td>Mg(OH)₂</td>
</tr>
<tr>
<td>Alles als Anhydrit</td>
<td>1,018743</td>
<td>CaSO₄</td>
</tr>
<tr>
<td>Cl abzügl. CdCl₂ als Halit</td>
<td>1,307633</td>
<td>NaCl</td>
</tr>
<tr>
<td>Alles als Al(OH)₃</td>
<td>0,786427</td>
<td>Al(OH)₃, Gibbsite</td>
</tr>
<tr>
<td>Alles als SiO₂</td>
<td>0,294494</td>
<td>SiO₂(am)</td>
</tr>
<tr>
<td>Auerbachs Salz</td>
<td>0,017522</td>
<td>NaPb₂(CO₃)₂(OH)</td>
</tr>
<tr>
<td>Alles als ZnO</td>
<td>0,221532</td>
<td>ZnO-aktiv</td>
</tr>
<tr>
<td>Alles als CdCl₂</td>
<td>0,002277</td>
<td>CdCl₂</td>
</tr>
<tr>
<td>Alles als Fe(OH)₂</td>
<td>0,233513</td>
<td>Fe(OH)₂</td>
</tr>
</tbody>
</table>

Durch Fettdruck hervorgehobene Phasen wurden mittels RDA nachgewiesen.

Die Ergebnisse der anschließenden geochemischen Modellierung zeigen Abb. 6.73 bis Abb. 6.75. Wie nicht anders zu erwarten, sind bei der Gleichgewichtsmodellierung auch hier die Gehalte an den gemessenen Schwermetallen Pb, Zn und Cd in den Lösungen höher, so dass einige Bodenkörper unterdrückt werden müssen.

6.3.4.1 Vergleich der experimentellen Ergebnisse des LISA-Versuchs mit der geochemischen Modellierung

Der Vergleich zwischen LISA-Versuch und Modellierung (Abb. 6.76 bis Abb. 6.79) führt wieder zu ähnlichen Ergebnissen wie bei CA528 und CA539. Eine Anpassung gelingt auch hier nicht, die Analysenwerte des Versuchs ändern sich fast gar nicht.
Abb. 6.73 Entwicklung der Hauptelemente in Lösung bei der Modellierung der Reaktion des Abfalls CA606 mit IP21 im z_i-Intervall 0 bis 1,6 entsprechend 0 bis 1,6 kg Abfall pro 1 Liter Wasser in der Ausgangslösung

Oben: Gleichgewichtsmodellierung

Unten: Unterdrückung der Phasen Sphalerit, Simonkolleit, Willemite, K_2ZnCl_4, $Na_2ZnCl_4\cdot3H_2O$, ZnO, Zn(OH)$_2$, Namuwit
Abb. 6.74 Entwicklung des pH-Wertes und des Wassergehaltes der Lösung bei der Modellierung der Reaktion des Abfalls CA606 mit IP21-Lösung im \(z_i \)-Intervall 0 bis 1,6 entsprechend 0 bis 1,6 kg Abfall pro Liter Wasser in der Ausgangslösung

Oben: Gleichgewichtsmodellierung

Unten: Unterdrückung der Phasen Sphalerit, Simonkolleit, Willemit, K\(_2\)ZnCl\(_4\), Na\(_2\)ZnCl\(_4\)-3H\(_2\)O, ZnO, Zn(OH)\(_2\), Namuwit
Abb. 6.75 Entwicklung Pb, Zn und Cd in Lösung bei der Modellierung (oben) der Reaktion des Abfalls CA606 mit IP21 im z_i-Intervall 0 bis 1,6 entsprechend 0 bis 1,6 kg Abfall pro 1 Liter Wasser in der Ausgangslösung

Oben: Gleichgewichtsmodellierung

Unten: Unterdrückung der Phasen Sphalerit, Simonkolleit, Willemite, K_2ZnCl_4, $Na_2ZnCl_4\cdot3H_2O$, ZnO, Zn(OH)$_2$, Namuwit

(ACHTUNG! Die untere Skala für Pb, Zn zeigt das Zehnfache an!)
Abb. 6.76 Vergleich der Entwicklung der Haupelemente in Lösung in Lisa-Versuchen und in der geochemischen Gleichgewichtsmodellierung

Abb. 6.77 Anpassung der Haupelemente aus der geochemischen Modellierung an die experimentellen Ergebnisse
Abb. 6.78 Vergleich der Entwicklung der Pb-, Zn- und Cd-Gehalte in Lösung in Lisa-Versuchen und in der geochemischen Gleichgewichtsmodellierung

Abb. 6.79 Anpassung der Pb-, Zn- und Cd-Gehalte aus der geochemischen Modellierung an die experimentellen Ergebnisse
6.3.4.2 Vergleich der experimentellen Ergebnisse der Batch-Versuche mit der geochemischen Modellierung

Auch hier ist die Anpassung der Modellierung an die Ergebnisse der Batch-Versuche nach dem gleichen Verfahren erfolgt wie bei CA528 und CA539 (Abb. 6.80 bis Abb. 6.83). Die elementspezifische Anpassung der s/f-Werte für die Schwermetalle Pb, Zn und Cd führt zu einer sehr guten Übereinstimmung zwischen Modellierung und Versuchen.

Abb. 6.80 Vergleich der Entwicklung der Hauptelemente in Lösungen der Batch-Versuche und in der geochemischen Gleichgewichtsmodellierung
Abb. 6.81 Vergleich der Hauptelemente aus der angepassten geochemischen Modellierung mit den experimentellen Ergebnissen
Unterdrückung der Phasen Sphalerit, Simonkolleit, Willemit, K$_2$ZnCl$_4$, Na$_2$ZnCl$_4$·3H$_2$O, ZnO, Zn(OH)$_2$, Namuwit

Abb. 6.82 Vergleich der Pb-, Zn- und Cd-Gehalte in Lösung in den Batch-Versuchen und in der geochemischen Gleichgewichtsmodellierung
Abb. 6.83 Anpassung der Pb-, Zn- und Cd-Gehalte aus der geochemischen Modellierung an die experimentellen Ergebnisse

6.3.5 Ableitbare Aussagen aus der Anpassung der geochemischen Modellierung an die experimentellen Ergebnisse

Die Schlussfolgerungen aus der Anpassung sind die gleichen wie in Kap. 6.1.5 und Kap. 6.2.5. Der LISA-Versuch erfüllt nicht die Erwartungen, die Batch-Versuche lassen sich gut modellieren und aus der Anpassung ergeben sich die in Tab. 6.30 aufgeführten elementspezifischen Verfügbarkeiten.

Tab. 6.30 Elementspezifische Verfügbarkeiten der Schwermetalle Pb, Zn und Cd, abgeleitet aus der Anpassung der geochemischen Modellierung an die Batch-Versuche des Abfalls CA606 mit IP21-Lösung

<table>
<thead>
<tr>
<th>Element</th>
<th>Verfügbarkeit (84 Tage)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pb</td>
<td>91 %</td>
</tr>
<tr>
<td>Zn</td>
<td>4 %</td>
</tr>
<tr>
<td>Cd</td>
<td>86 %</td>
</tr>
</tbody>
</table>
6.4 Reaktion MVA-Schlacke CA608 mit IP21-Lösung

Auch hier geschieht, wie bereits in Kap. 6.2 und Kap. 6.3, die Darstellung der Ergebnisse der Versuche und der Modellierungen analog zu Kap. 6.1 Reaktion der Flugasche CA528 mit IP21-Lösung.

6.4.1 CA608 - Lisa-Versuch

Der LISA-Versuch wurde mit der MVA-Schlacke (entschrotet, Typ 2) CA608 und IP21 durchgeführt. In gleichmäßigen zeitlichen Abständen wurden 15 Lösungsproben entnommen und analysiert. Die Auswertung ergab einen Abfall der Lösungsdichte von 1,313 auf 1,265 g/cm³, einen leichten Anstieg des pH-Wertes von 5,9 auf 6,3, einen deutlichen Abfall des Sulfatgehaltes der Lösung, einen etwas schwächeren Abfall des Mg-Gehaltes und einen Anstieg des Na-Gehaltes in der Lösung. Bei den Schwermetallen war der stärkste Konzentrationsanstieg beim Pb, von $1,1 \times 10^{-2}$ auf $1,6 \times 10^{-2}$ mol/l. Auch Cd und Zn wurden aus der Schlacke ausgelagert, wenn auch weniger als Pb. Cd reicherte sich in der Lösung von $5,0 \times 10^{-5}$ auf $1,4 \times 10^{-4}$ mol/l an. Das Auslaugverhalten von Zn war unerwartet. Es kam nicht zu einem Anstieg, sondern der Zn-Gehalt sank von anfangs $3,3 \times 10^{-2}$ bis auf $1,9 \times 10^{-2}$ mol/l nach 63 Tagen und stieg zum Ende wieder auf $2,2 \times 10^{-2}$ mol/l an.
Tab. 6.31 Experimentelle Ergebnisse des LISA-Versuchs zur Reaktion der Schlacke CA608 mit IP21-Lösung [Teil 1]

<table>
<thead>
<tr>
<th>Labor-Nr.</th>
<th>Probenbezeichnung</th>
<th>Zeit [d]</th>
<th>s / f [kg/kg]</th>
<th>Dichte [g/cm³]</th>
<th>pH-L</th>
<th>Temp. [°C]</th>
</tr>
</thead>
<tbody>
<tr>
<td>29197</td>
<td>CA 608+IP21 7 Tage</td>
<td>7</td>
<td>0,835</td>
<td>1,3131</td>
<td>5,90</td>
<td>25,8</td>
</tr>
<tr>
<td>29198</td>
<td>CA 608+IP21 14 Tage</td>
<td>14</td>
<td>0,857</td>
<td>1,3135</td>
<td>6,12</td>
<td>24,4</td>
</tr>
<tr>
<td>29199</td>
<td>CA 608+IP21 21 Tage</td>
<td>21</td>
<td>0,879</td>
<td>1,3060</td>
<td>6,16</td>
<td>24,6</td>
</tr>
<tr>
<td>29200</td>
<td>CA 608+IP21 28 Tage</td>
<td>28</td>
<td>0,901</td>
<td>1,2872</td>
<td>6,23</td>
<td>28,5</td>
</tr>
<tr>
<td>29201</td>
<td>CA 608+IP21 35 Tage</td>
<td>35</td>
<td>0,925</td>
<td>1,2745</td>
<td>6,27</td>
<td>26,0</td>
</tr>
<tr>
<td>29202</td>
<td>CA 608+IP21 42 Tage</td>
<td>42</td>
<td>0,950</td>
<td>1,2707</td>
<td>6,24</td>
<td>26,7</td>
</tr>
<tr>
<td>29203</td>
<td>CA 608+IP21 49 Tage</td>
<td>49</td>
<td>0,974</td>
<td>1,2693</td>
<td>6,17</td>
<td>27,0</td>
</tr>
<tr>
<td>29204</td>
<td>CA 608+IP21 56 Tage</td>
<td>56</td>
<td>1,002</td>
<td>1,2682</td>
<td>6,32</td>
<td>28,7</td>
</tr>
<tr>
<td>29205</td>
<td>CA 608+IP21 63 Tage</td>
<td>63</td>
<td>1,030</td>
<td>1,2672</td>
<td>6,27</td>
<td>24,5</td>
</tr>
<tr>
<td>29206</td>
<td>CA 608+IP21 70 Tage</td>
<td>70</td>
<td>1,061</td>
<td>1,2663</td>
<td>6,25</td>
<td>27,7</td>
</tr>
<tr>
<td>29207</td>
<td>CA 608+IP21 77 Tage</td>
<td>77</td>
<td>1,096</td>
<td>1,2661</td>
<td>6,02</td>
<td>26,5</td>
</tr>
<tr>
<td>29208</td>
<td>CA 608+IP21 84 Tage</td>
<td>84</td>
<td>1,131</td>
<td>1,2656</td>
<td>6,00</td>
<td>25,1</td>
</tr>
<tr>
<td>29209</td>
<td>CA 608+IP21 91 Tage</td>
<td>91</td>
<td>1,170</td>
<td>1,2658</td>
<td>5,82</td>
<td>27,2</td>
</tr>
<tr>
<td>29210</td>
<td>CA 608+IP21 98 Tage</td>
<td>98</td>
<td>1,214</td>
<td>1,2653</td>
<td>6,13</td>
<td>27,7</td>
</tr>
<tr>
<td>29211</td>
<td>CA 608+IP21 105 Tage</td>
<td>105</td>
<td>1,263</td>
<td>1,2659</td>
<td>5,96</td>
<td>29,3</td>
</tr>
</tbody>
</table>

Tab. 6.32 Experimentelle Ergebnisse des LISA-Versuchs zur Reaktion der Schlacke CA608 mit IP21-Lösung [Teil 2]

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>29197</td>
<td>0,744 0,629 0,0019</td>
<td>4,099</td>
<td>8,038</td>
<td>1,334</td>
<td></td>
<td></td>
<td>4,89-10⁻⁰⁵</td>
<td>1,11-10⁻⁰²</td>
<td>3,31-10⁻⁰²</td>
</tr>
<tr>
<td>29198</td>
<td>0,699 0,569 0,0016</td>
<td>3,843</td>
<td>7,661</td>
<td>1,269</td>
<td></td>
<td></td>
<td>6,45-10⁻⁰⁵</td>
<td>1,24-10⁻⁰²</td>
<td>3,04-10⁻⁰²</td>
</tr>
<tr>
<td>29199</td>
<td>0,709 0,571 0,0017 3,656</td>
<td>7,691 1,070</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6,24-10⁻⁰⁵</td>
<td>1,31-10⁻⁰²</td>
<td>2,71-10⁻⁰²</td>
</tr>
<tr>
<td>29200</td>
<td>0,821 0,585 0,0026 3,405</td>
<td>7,868 0,668</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9,18-10⁻⁰⁵</td>
<td>1,31-10⁻⁰²</td>
<td>2,55-10⁻⁰²</td>
</tr>
<tr>
<td>29201</td>
<td>0,916 0,611 0,0041 3,280</td>
<td>7,947 0,417</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,08-10⁻⁰⁴</td>
<td>1,38-10⁻⁰²</td>
<td>2,16-10⁻⁰²</td>
</tr>
<tr>
<td>29202</td>
<td>0,953 0,618 0,0055 2,505</td>
<td>7,807 0,329</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,07-10⁻⁰⁴</td>
<td>1,46-10⁻⁰²</td>
<td>2,00-10⁻⁰²</td>
</tr>
<tr>
<td>29203</td>
<td>0,951 0,612 0,0065 3,258</td>
<td>7,910 0,288</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,17-10⁻⁰⁴</td>
<td>1,48-10⁻⁰²</td>
<td>1,94-10⁻⁰²</td>
</tr>
<tr>
<td>29204</td>
<td>0,943 0,600 0,0073 3,214</td>
<td>7,916 0,263</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,12-10⁻⁰⁴</td>
<td>1,45-10⁻⁰²</td>
<td>1,89-10⁻⁰²</td>
</tr>
<tr>
<td>29205</td>
<td>0,960 0,620 0,0082 3,267</td>
<td>7,948 0,238</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,20-10⁻⁰⁴</td>
<td>1,52-10⁻⁰²</td>
<td>1,88-10⁻⁰²</td>
</tr>
<tr>
<td>29206</td>
<td>0,894 0,582 0,0084 3,090</td>
<td>7,936 0,213</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,24-10⁻⁰⁴</td>
<td>1,62-10⁻⁰²</td>
<td>1,92-10⁻⁰²</td>
</tr>
<tr>
<td>29207</td>
<td>0,948 0,621 0,0120 3,250</td>
<td>7,987 0,209</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,13-10⁻⁰⁴</td>
<td>1,56-10⁻⁰²</td>
<td>1,93-10⁻⁰²</td>
</tr>
<tr>
<td>29208</td>
<td>0,830 0,550 0,0087 2,893</td>
<td>7,924 0,175</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,10-10⁻⁰⁴</td>
<td>1,55-10⁻⁰²</td>
<td>1,91-10⁻⁰²</td>
</tr>
<tr>
<td>29209</td>
<td>0,967 0,628 0,0102 3,246</td>
<td>8,080 0,191</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,32-10⁻⁰⁴</td>
<td>1,56-10⁻⁰²</td>
<td>2,06-10⁻⁰²</td>
</tr>
<tr>
<td>29210</td>
<td>0,956 0,630 0,0105 3,238</td>
<td>8,094 0,177</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,31-10⁻⁰⁴</td>
<td>1,58-10⁻⁰²</td>
<td>2,14-10⁻⁰²</td>
</tr>
<tr>
<td>29211</td>
<td>0,966 0,629 0,0110 3,182</td>
<td>7,966 0,170</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,38-10⁻⁰⁴</td>
<td>1,55-10⁻⁰²</td>
<td>2,18-10⁻⁰²</td>
</tr>
</tbody>
</table>

121
Tab. 6.33 Experimentelle Ergebnisse des LISA-Versuchs zur Reaktion der Schlacke CA608 mit IP21-Lösung [Teil 3]

<table>
<thead>
<tr>
<th>Labor-Nr.</th>
<th>Todvolumen [g]</th>
<th>Probe [g]</th>
<th>Todvolumen [cm³]</th>
<th>Probe [cm³]</th>
<th>Σ Volumen [cm³]</th>
<th>Feststoff [g]</th>
<th>Lösung [cm³]</th>
<th>s / f [g/cm³]</th>
</tr>
</thead>
<tbody>
<tr>
<td>29197</td>
<td>5,4</td>
<td>5,1</td>
<td>4,1</td>
<td>3,9</td>
<td>8,0</td>
<td>350,5</td>
<td>316,6</td>
<td>1,1</td>
</tr>
<tr>
<td>29198</td>
<td>4,8</td>
<td>5,4</td>
<td>3,7</td>
<td>4,1</td>
<td>7,8</td>
<td>350,5</td>
<td>308,8</td>
<td>1,1</td>
</tr>
<tr>
<td>29199</td>
<td>5,0</td>
<td>5,1</td>
<td>3,8</td>
<td>3,9</td>
<td>7,7</td>
<td>350,5</td>
<td>301,1</td>
<td>1,2</td>
</tr>
<tr>
<td>29200</td>
<td>4,9</td>
<td>5,0</td>
<td>3,8</td>
<td>3,9</td>
<td>7,6</td>
<td>350,5</td>
<td>293,4</td>
<td>1,2</td>
</tr>
<tr>
<td>29201</td>
<td>4,9</td>
<td>5,2</td>
<td>3,8</td>
<td>4,0</td>
<td>7,9</td>
<td>350,5</td>
<td>285,6</td>
<td>1,2</td>
</tr>
<tr>
<td>29202</td>
<td>4,7</td>
<td>4,6</td>
<td>3,7</td>
<td>3,6</td>
<td>7,4</td>
<td>350,5</td>
<td>278,2</td>
<td>1,3</td>
</tr>
<tr>
<td>29203</td>
<td>4,9</td>
<td>4,9</td>
<td>3,9</td>
<td>3,8</td>
<td>7,7</td>
<td>350,5</td>
<td>270,5</td>
<td>1,3</td>
</tr>
<tr>
<td>29204</td>
<td>4,8</td>
<td>5,0</td>
<td>3,8</td>
<td>3,9</td>
<td>7,7</td>
<td>350,5</td>
<td>262,8</td>
<td>1,3</td>
</tr>
<tr>
<td>29205</td>
<td>5,0</td>
<td>4,9</td>
<td>3,9</td>
<td>3,9</td>
<td>7,8</td>
<td>350,5</td>
<td>254,9</td>
<td>1,4</td>
</tr>
<tr>
<td>29206</td>
<td>5,0</td>
<td>5,3</td>
<td>3,9</td>
<td>4,2</td>
<td>8,1</td>
<td>350,5</td>
<td>246,8</td>
<td>1,4</td>
</tr>
<tr>
<td>29207</td>
<td>5,0</td>
<td>5,0</td>
<td>3,9</td>
<td>4,0</td>
<td>7,9</td>
<td>350,5</td>
<td>238,9</td>
<td>1,5</td>
</tr>
<tr>
<td>29208</td>
<td>5,2</td>
<td>5,2</td>
<td>4,1</td>
<td>4,1</td>
<td>8,2</td>
<td>350,5</td>
<td>230,7</td>
<td>1,5</td>
</tr>
<tr>
<td>29209</td>
<td>5,0</td>
<td>5,8</td>
<td>3,9</td>
<td>4,6</td>
<td>8,5</td>
<td>350,5</td>
<td>222,1</td>
<td>1,6</td>
</tr>
<tr>
<td>29210</td>
<td>5,4</td>
<td>5,8</td>
<td>4,2</td>
<td>4,6</td>
<td>8,8</td>
<td>350,5</td>
<td>213,3</td>
<td>1,6</td>
</tr>
<tr>
<td>29211</td>
<td>4,9</td>
<td>5,1</td>
<td>3,9</td>
<td>4,0</td>
<td>7,9</td>
<td>350,5</td>
<td>205,4</td>
<td>1,7</td>
</tr>
</tbody>
</table>

Tab. 6.34 Experimentelle Ergebnisse des LISA-Versuchs zur Reaktion der Schlacke CA608 mit IP21-Lösung [Teil 4]

<table>
<thead>
<tr>
<th>Labor-Nr.</th>
<th>Austrag Cd [mg/kg]</th>
<th>Σ Austrag Cd [mg/kg]</th>
<th>c(s) / c(f) für Cd [mg/kg]/[mg/kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>29197</td>
<td>0,11</td>
<td>0,11</td>
<td>10,75</td>
</tr>
<tr>
<td>29198</td>
<td>0,14</td>
<td>0,25</td>
<td>8,14</td>
</tr>
<tr>
<td>29199</td>
<td>0,13</td>
<td>0,38</td>
<td>8,33</td>
</tr>
<tr>
<td>29200</td>
<td>0,20</td>
<td>0,58</td>
<td>5,56</td>
</tr>
<tr>
<td>29201</td>
<td>0,24</td>
<td>0,82</td>
<td>4,68</td>
</tr>
<tr>
<td>29202</td>
<td>0,23</td>
<td>1,04</td>
<td>4,69</td>
</tr>
<tr>
<td>29203</td>
<td>0,26</td>
<td>1,30</td>
<td>4,23</td>
</tr>
<tr>
<td>29204</td>
<td>0,25</td>
<td>1,54</td>
<td>4,41</td>
</tr>
<tr>
<td>29205</td>
<td>0,27</td>
<td>1,81</td>
<td>4,08</td>
</tr>
<tr>
<td>29206</td>
<td>0,29</td>
<td>2,10</td>
<td>3,91</td>
</tr>
<tr>
<td>29207</td>
<td>0,25</td>
<td>2,35</td>
<td>4,29</td>
</tr>
<tr>
<td>29208</td>
<td>0,26</td>
<td>2,61</td>
<td>4,35</td>
</tr>
<tr>
<td>29209</td>
<td>0,32</td>
<td>2,93</td>
<td>3,62</td>
</tr>
<tr>
<td>29210</td>
<td>0,33</td>
<td>3,26</td>
<td>3,61</td>
</tr>
<tr>
<td>29211</td>
<td>0,31</td>
<td>3,57</td>
<td>3,41</td>
</tr>
</tbody>
</table>
Tab. 6.35 Experimentelle Ergebnisse des LISA-Versuchs zur Reaktion der Schlacke CA608 mit IP21-Lösung [Teil 5]

<table>
<thead>
<tr>
<th>Labor-Nr.</th>
<th>Austrag Pb [mg/kg]</th>
<th>Σ Austrag Pb [mg/kg]</th>
<th>c(s) / c(f) für Pb [mg/kg]/[mg/kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>29197</td>
<td>44,62</td>
<td>44,62</td>
<td>2,8</td>
</tr>
<tr>
<td>29198</td>
<td>49,69</td>
<td>94,31</td>
<td>2,5</td>
</tr>
<tr>
<td>29199</td>
<td>51,84</td>
<td>146,15</td>
<td>2,3</td>
</tr>
<tr>
<td>29200</td>
<td>51,79</td>
<td>197,94</td>
<td>2,3</td>
</tr>
<tr>
<td>29201</td>
<td>56,51</td>
<td>254,45</td>
<td>2,1</td>
</tr>
<tr>
<td>29202</td>
<td>56,98</td>
<td>311,43</td>
<td>2,0</td>
</tr>
<tr>
<td>29203</td>
<td>59,75</td>
<td>371,18</td>
<td>1,9</td>
</tr>
<tr>
<td>29204</td>
<td>58,84</td>
<td>430,02</td>
<td>1,9</td>
</tr>
<tr>
<td>29205</td>
<td>62,16</td>
<td>492,18</td>
<td>1,8</td>
</tr>
<tr>
<td>29206</td>
<td>69,30</td>
<td>561,48</td>
<td>1,7</td>
</tr>
<tr>
<td>29207</td>
<td>64,97</td>
<td>626,45</td>
<td>1,7</td>
</tr>
<tr>
<td>29208</td>
<td>67,21</td>
<td>693,67</td>
<td>1,7</td>
</tr>
<tr>
<td>29209</td>
<td>69,44</td>
<td>763,10</td>
<td>1,7</td>
</tr>
<tr>
<td>29210</td>
<td>72,73</td>
<td>835,84</td>
<td>1,6</td>
</tr>
<tr>
<td>29211</td>
<td>64,24</td>
<td>900,08</td>
<td>1,6</td>
</tr>
</tbody>
</table>

Tab. 6.36 Experimentelle Ergebnisse des LISA-Versuchs zur Reaktion der Schlacke CA608 mit IP21-Lösung [Teil 6]

<table>
<thead>
<tr>
<th>Labor-Nr.</th>
<th>Austrag Zn [mg/kg]</th>
<th>Σ Austrag Zn [mg/kg]</th>
<th>c(s) / c(f) für Zn [mg/kg]/[mg/kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>29197</td>
<td>41,8</td>
<td>41,8</td>
<td>14,7</td>
</tr>
<tr>
<td>29198</td>
<td>38,3</td>
<td>80,0</td>
<td>16,0</td>
</tr>
<tr>
<td>29199</td>
<td>34,0</td>
<td>114,0</td>
<td>17,8</td>
</tr>
<tr>
<td>29200</td>
<td>31,9</td>
<td>145,9</td>
<td>18,7</td>
</tr>
<tr>
<td>29201</td>
<td>27,9</td>
<td>173,8</td>
<td>21,7</td>
</tr>
<tr>
<td>29202</td>
<td>24,7</td>
<td>198,5</td>
<td>23,3</td>
</tr>
<tr>
<td>29203</td>
<td>24,7</td>
<td>223,2</td>
<td>24,0</td>
</tr>
<tr>
<td>29204</td>
<td>24,2</td>
<td>247,4</td>
<td>24,6</td>
</tr>
<tr>
<td>29205</td>
<td>24,3</td>
<td>271,7</td>
<td>24,8</td>
</tr>
<tr>
<td>29206</td>
<td>26,0</td>
<td>297,6</td>
<td>24,2</td>
</tr>
<tr>
<td>29207</td>
<td>25,3</td>
<td>323,0</td>
<td>24,0</td>
</tr>
<tr>
<td>29208</td>
<td>26,2</td>
<td>349,2</td>
<td>24,2</td>
</tr>
<tr>
<td>29209</td>
<td>29,0</td>
<td>378,3</td>
<td>22,4</td>
</tr>
<tr>
<td>29210</td>
<td>31,1</td>
<td>409,4</td>
<td>21,6</td>
</tr>
<tr>
<td>29211</td>
<td>28,5</td>
<td>437,9</td>
<td>21,1</td>
</tr>
</tbody>
</table>
Abb. 6.84 Kumulierter relativer Lösungsauftrag aus dem LISA-Versuch infolge wiedholter Probennahme;
Oben: Darstellung über die Zeit
Unten: Darstellung des sich verändernden Feststoff-Lösungsverhältnisses
Abb. 6.85 Zeitliche Entwicklung der Feststoff-Lösungsverhältnisse im Lisa-Versuch „Abfall CA608 mit IP21-Lösung“

Abb. 6.86 Entwicklung der Lösungsdichte und der Wassergehalte in der Lösung im Lisa-Versuch „Abfall CA608 mit IP21-Lösung“ mit fortschreitender Reaktionszeit und Probennahme
Abb. 6.87 Zeitliche Entwicklung der Hauptelementgehalte in der Lösung im Lisa-Versuch „Abfall CA608 mit IP21-Lösung“

Abb. 6.88 Zeitliche Entwicklung des pH-Wertes in der Lösung im Lisa-Versuch „Abfall CA608 mit IP21-Lösung“
Abb. 6.89 Zeitliche Entwicklung der Schwermetallgehalte in der Lösung im Lisa-Versuch „Abfall CA608 mit IP21-Lösung“

Abb. 6.90 Zeitliche Entwicklung Kumulierter Austrag von Schwermetallen aus dem Abfall in die Lösung im Lisa-Versuch „Abfall CA606 mit IP21-Lösung“
Abb. 6.91 Zeitliche Entwicklung der elementspezifischen Auslaugbarkeiten der Schwermetalle Pb, Zn und Cd im Lisa-Versuch „Abfall CA606 mit IP21-Lösung“

6.4.2 CA608 - Batch-Versuche

Die Auslaugreaktion des Abfalls CA608 mit IP21-Lösung wurde zum Vergleich mit den Ergebnissen der Lisa-Versuche auch in Batch-Versuchen mit unterschiedlichen Feststoff-Lösungsverhältnissen durchgeführt (Tab. 6.37 und Tab. 6.38) und die Lösungszusammensetzungen nach 7, 21, 28, 35, 49, 56, 63, 77 und 84 Tagen (Abb. 6.92 bis Abb. 6.98) bei den untersuchten s/f von 0,208, 0,278 0,417 und 0,833 analysiert. Besonders aus Abb. 6.96 wird deutlich, dass bei den niedrigen s/f-Verhältnissen relativ schnell eine weitestgehende Auslaugung der Schwermetalle erreicht wird, während beim größten Verhältnis von 0,556 das Maximum noch nicht erreicht wurde. Da jeder Batch-Versuch doppelt ausgeführt wurde, ist sichergestellt, dass diese Aussagen belastbar sind. Mit der Modellierung verglichen werden können im Grunde nur die experimentellen Ergebnisse, die die maximale Auslaugbarkeit erreicht haben.
Tab. 6.37 Experimentelle Ergebnisse der Batch-Versuche mit unterschiedlichen Feststoff-Lösungsverhältnissen (s/f) zur Reaktion der Schlacke CA608 mit IP21-Lösung [Teil 1]

<table>
<thead>
<tr>
<th>Labor-Nr.</th>
<th>Probenbezeichnung</th>
<th>Zeit [d]</th>
<th>s / f [kg/kg]</th>
<th>Dichte [g/cm³]</th>
<th>pH-B</th>
<th>Temp. [°C]</th>
</tr>
</thead>
<tbody>
<tr>
<td>29183</td>
<td>CA 608+IP217 Tage</td>
<td>7</td>
<td>0,834</td>
<td>1,32</td>
<td>6,13</td>
<td>25,30</td>
</tr>
<tr>
<td>29184</td>
<td>CA 608+IP2121 Tage</td>
<td>21</td>
<td>0,838</td>
<td>1,29</td>
<td>6,00</td>
<td>26,30</td>
</tr>
<tr>
<td>29186</td>
<td>CA 608+IP2135 Tage</td>
<td>35</td>
<td>0,833</td>
<td>1,28</td>
<td>6,06</td>
<td>24,10</td>
</tr>
<tr>
<td>29187</td>
<td>CA 608+IP2149 Tage</td>
<td>49</td>
<td>0,833</td>
<td>1,18</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>29188</td>
<td>CA 608+IP2163 Tage</td>
<td>63</td>
<td>0,833</td>
<td>1,26</td>
<td>5,94</td>
<td>25,90</td>
</tr>
<tr>
<td>29189</td>
<td>CA 608+IP2177 Tage</td>
<td>77</td>
<td>0,824</td>
<td>1,28</td>
<td>5,88</td>
<td>28,50</td>
</tr>
<tr>
<td>30380.01</td>
<td>CA 608+IP2128 Tage</td>
<td>28</td>
<td>0,417</td>
<td>1,30</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>30380.02</td>
<td>CA 608+IP2128 Tage</td>
<td>28</td>
<td>0,417</td>
<td>1,29</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>30380.03</td>
<td>CA 608+IP2156 Tage</td>
<td>56</td>
<td>0,417</td>
<td>1,30</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>30380.04</td>
<td>CA 608+IP2156 Tage</td>
<td>56</td>
<td>0,417</td>
<td>1,29</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>30380.05</td>
<td>CA 608+IP2184 Tage</td>
<td>84</td>
<td>0,417</td>
<td>1,29</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>30380.06</td>
<td>CA 608+IP2184 Tage</td>
<td>84</td>
<td>0,417</td>
<td>1,29</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>30381.01</td>
<td>CA 608+IP2128 Tage</td>
<td>28</td>
<td>0,278</td>
<td>1,30</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>30381.02</td>
<td>CA 608+IP2128 Tage</td>
<td>28</td>
<td>0,278</td>
<td>1,30</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>30381.03</td>
<td>CA 608+IP2156 Tage</td>
<td>56</td>
<td>0,278</td>
<td>1,29</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>30381.04</td>
<td>CA 608+IP2156 Tage</td>
<td>56</td>
<td>0,278</td>
<td>1,29</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>30381.05</td>
<td>CA 608+IP2184 Tage</td>
<td>84</td>
<td>0,278</td>
<td>1,29</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>30381.06</td>
<td>CA 608+IP2184 Tage</td>
<td>84</td>
<td>0,278</td>
<td>1,29</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>30382.01</td>
<td>CA 608+IP2128 Tage</td>
<td>28</td>
<td>0,208</td>
<td>1,30</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>30382.02</td>
<td>CA 608+IP2128 Tage</td>
<td>28</td>
<td>0,208</td>
<td>1,29</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>30382.03</td>
<td>CA 608+IP2156 Tage</td>
<td>56</td>
<td>0,208</td>
<td>1,29</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>30382.04</td>
<td>CA 608+IP2156 Tage</td>
<td>56</td>
<td>0,208</td>
<td>1,29</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>30382.05</td>
<td>CA 608+IP2184 Tage</td>
<td>84</td>
<td>0,208</td>
<td>1,29</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>30382.06</td>
<td>CA 608+IP2184 Tage</td>
<td>84</td>
<td>0,208</td>
<td>1,29</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

- - - = nicht gemessen
Tab. 6.38 Experimentelle Ergebnisse der Batch-Versuche mit unterschiedlichen Feststoff-Lösungsverhältnissen (s/f) zur Reaktion der Schlacke CA608 mit IP21-Lösung [Teil 2]

<table>
<thead>
<tr>
<th>Labor-Nr.</th>
<th>[mol/kg H₂O]</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>29183</td>
<td>0,711</td>
<td>0,624</td>
<td>0,0022</td>
<td>4,015</td>
<td>7,866</td>
<td>1,248</td>
<td>7,26·10⁻⁰⁵</td>
<td>1,4·10⁻⁰²</td>
<td>2,98·10⁻⁰²</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29184</td>
<td>0,708</td>
<td>0,596</td>
<td>0,0042</td>
<td>3,741</td>
<td>8,137</td>
<td>0,705</td>
<td>8,86·10⁻⁰⁵</td>
<td>1,5·10⁻⁰²</td>
<td>2,83·10⁻⁰²</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29185</td>
<td>0,669</td>
<td>0,334</td>
<td>0,0057</td>
<td>3,670</td>
<td>8,454</td>
<td>0,262</td>
<td>1,03·10⁻⁰⁴</td>
<td>1,61·10⁻⁰²</td>
<td>2,51·10⁻⁰²</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29186</td>
<td>0,542</td>
<td>0,480</td>
<td>0,0068</td>
<td>3,733</td>
<td>8,762</td>
<td>0,182</td>
<td>8,98·10⁻⁰⁵</td>
<td>1,66·10⁻⁰²</td>
<td>2,60·10⁻⁰²</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29187</td>
<td>0,564</td>
<td>0,579</td>
<td>0,0080</td>
<td>4,038</td>
<td>9,002</td>
<td>0,159</td>
<td>8,92·10⁻⁰⁵</td>
<td>1,85·10⁻⁰²</td>
<td>3,11·10⁻⁰²</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29188</td>
<td>0,548</td>
<td>0,564</td>
<td>0,0089</td>
<td>3,972</td>
<td>9,108</td>
<td>0,145</td>
<td>9,68·10⁻⁰⁵</td>
<td>2,01·10⁻⁰²</td>
<td>3,29·10⁻⁰²</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30380.01</td>
<td>0,446</td>
<td>0,535</td>
<td>0,0020</td>
<td>4,268</td>
<td>8,771</td>
<td>0,604</td>
<td>7,11·10⁻⁰⁶</td>
<td>5,18·10⁻⁰³</td>
<td>1,56·10⁻⁰²</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30380.02</td>
<td>0,505</td>
<td>0,445</td>
<td>0,0029</td>
<td>4,146</td>
<td>9,107</td>
<td>0,421</td>
<td>1,37·10⁻⁰⁵</td>
<td>7,98·10⁻⁰³</td>
<td>1,47·10⁻⁰²</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30380.03</td>
<td>0,532</td>
<td>0,484</td>
<td>0,0028</td>
<td>4,240</td>
<td>9,058</td>
<td>0,453</td>
<td>2,58·10⁻⁰⁵</td>
<td>8,07·10⁻⁰³</td>
<td>1,62·10⁻⁰²</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30380.04</td>
<td>0,534</td>
<td>0,385</td>
<td>0,0048</td>
<td>4,068</td>
<td>9,257</td>
<td>0,268</td>
<td>3,35·10⁻⁰⁵</td>
<td>7,91·10⁻⁰³</td>
<td>1,48·10⁻⁰²</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30380.05</td>
<td>0,433</td>
<td>0,460</td>
<td>0,0024</td>
<td>4,208</td>
<td>9,020</td>
<td>0,370</td>
<td>2,64·10⁻⁰⁵</td>
<td>8,27·10⁻⁰³</td>
<td>1,62·10⁻⁰²</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30380.06</td>
<td>0,437</td>
<td>0,467</td>
<td>0,0033</td>
<td>4,214</td>
<td>9,382</td>
<td>0,328</td>
<td>2,89·10⁻⁰⁵</td>
<td>8,52·10⁻⁰³</td>
<td>1,60·10⁻⁰²</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30381.01</td>
<td>0,545</td>
<td>0,535</td>
<td>0,0027</td>
<td>4,136</td>
<td>8,793</td>
<td>0,566</td>
<td>1,56·10⁻⁰⁵</td>
<td>5,19·10⁻⁰³</td>
<td>1,03·10⁻⁰²</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30381.02</td>
<td>0,524</td>
<td>0,443</td>
<td>0,0037</td>
<td>4,307</td>
<td>8,894</td>
<td>0,392</td>
<td>1,18·10⁻⁰⁵</td>
<td>5,41·10⁻⁰³</td>
<td>1,02·10⁻⁰²</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30381.03</td>
<td>0,511</td>
<td>0,422</td>
<td>0,0036</td>
<td>4,149</td>
<td>8,969</td>
<td>0,325</td>
<td>2,39·10⁻⁰⁵</td>
<td>5,64·10⁻⁰³</td>
<td>1,16·10⁻⁰²</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30381.04</td>
<td>0,515</td>
<td>0,407</td>
<td>0,0040</td>
<td>4,118</td>
<td>8,794</td>
<td>0,297</td>
<td>2,96·10⁻⁰⁵</td>
<td>5,54·10⁻⁰³</td>
<td>1,05·10⁻⁰²</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30381.05</td>
<td>0,432</td>
<td>0,393</td>
<td>0,0036</td>
<td>4,143</td>
<td>9,121</td>
<td>0,264</td>
<td>3,24·10⁻⁰⁵</td>
<td>6,00·10⁻⁰³</td>
<td>1,35·10⁻⁰²</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30381.06</td>
<td>0,478</td>
<td>0,470</td>
<td>0,0030</td>
<td>4,055</td>
<td>8,901</td>
<td>0,393</td>
<td>2,04·10⁻⁰⁵</td>
<td>5,33·10⁻⁰³</td>
<td>1,12·10⁻⁰²</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30382.01</td>
<td>0,526</td>
<td>0,553</td>
<td>0,0021</td>
<td>4,126</td>
<td>8,816</td>
<td>0,572</td>
<td>1,58·10⁻⁰⁵</td>
<td>3,96·10⁻⁰³</td>
<td>7,88·10⁻⁰³</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30382.02</td>
<td>0,534</td>
<td>0,473</td>
<td>0,0032</td>
<td>4,048</td>
<td>8,729</td>
<td>0,433</td>
<td>2,19·10⁻⁰⁵</td>
<td>4,16·10⁻⁰³</td>
<td>7,96·10⁻⁰³</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30382.03</td>
<td>0,522</td>
<td>0,437</td>
<td>0,0037</td>
<td>4,120</td>
<td>8,829</td>
<td>0,335</td>
<td>2,49·10⁻⁰⁵</td>
<td>4,17·10⁻⁰³</td>
<td>8,64·10⁻⁰³</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30382.04</td>
<td>0,511</td>
<td>0,440</td>
<td>0,0039</td>
<td>4,092</td>
<td>8,889</td>
<td>0,343</td>
<td>2,25·10⁻⁰⁵</td>
<td>4,14·10⁻⁰³</td>
<td>8,64·10⁻⁰³</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30382.05</td>
<td>0,452</td>
<td>0,437</td>
<td>0,0036</td>
<td>4,115</td>
<td>8,983</td>
<td>0,318</td>
<td>2,67·10⁻⁰⁵</td>
<td>4,28·10⁻⁰³</td>
<td>9,41·10⁻⁰³</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30382.06</td>
<td>0,427</td>
<td>0,482</td>
<td>0,0021</td>
<td>4,188</td>
<td>8,845</td>
<td>0,394</td>
<td>1,09·10⁻⁰⁵</td>
<td>4,12·10⁻⁰³</td>
<td>9,22·10⁻⁰³</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Abb. 6.92 Zeitliche Entwicklung der Hauptelementgehalte der Lösungen in den Batch-Versuchen „Abfall CA608 mit IP21-Lösung“ bei einem Feststoff-Lösungsverhältnis von 0,208

Abb. 6.93 Zeitliche Entwicklung der Hauptelementgehalte der Lösungen in den Batch-Versuchen „Abfall CA608 mit IP21-Lösung“ bei einem Feststoff-Lösungsverhältnis von 0,278

Abb. 6.96 Zeitliche Entwicklung von Pb in den Lösungen der Batch-Versuche „Abfall CA608 mit IP21-Lösung“ bei den Feststoff-Lösungsverhältnissen von 0,208, 0,278, 0,417 und 0,833

Abb. 6.97 Zeitliche Entwicklung von Zn in den Lösungen der Batch-Versuche „Abfall CA608 mit IP21-Lösung“ bei den Feststoff-Lösungsverhältnissen von 0,208, 0,278, 0,417 und 0,833
6.4.3 CA608 - Vergleich der Ergebnisse aus LISA- und Batch-Versuchen

Für die meisten Hauptelemente besteht eine recht gute Übereinstimmung zwischen den Ergebnissen des LISA-Versuchs mit den Ergebnissen des Batch-Versuchs mit vergleichbarem s/f.

Das ist wohl auch hier der Grund, weshalb sich im LISA-Versuch die Lösungszusammensetzung über die Zeit wenig veränderte, wogegen im Batch-Versuch die gemessenen Schwermetallgehalte stark anstiegen und am Ende der Versuche ein Ende der Auslaugung noch nicht erreicht war (Abb. 6.100).
Abb. 6.99 Vergleich der zeitlichen Entwicklung der Hauptelemente in Lisa und Batch-Versuchen bei einem anfänglichen Feststoff-Lösungsverhältnis von 0,833

Abb. 6.100 Vergleich der zeitlichen Entwicklung der Pb-, Zn- und Cd-Gehalte aus Lisa und Batch-Versuchen bei einem anfänglichen Feststoff-Lösungsverhältnis von 0,833
6.4.4 CA608 - Geochemische Modellierung und vergleich mit experimentellen Ergebnissen

Wie bei den drei bisher beschriebenen Abfällen ist auch hier wieder die Vorgehensweise die gleiche, wie sie in Kap. 6.1.4 bereits ausführlich beschrieben worden ist. Tab. 6.39 zeigt die berechnete vermutete Phasenzusammensetzung unter der Elektroneutralitätsbedingung, die sich wiederum wegen anderer erkannter Phasen geringfügig anders zusammensetzt.

Tab. 6.39 Umrechnung der Abfallzusammensetzung des Filterstaubs CA606 in hypothetische (vermutete) Mineralanteile

<table>
<thead>
<tr>
<th>Phase</th>
<th>Komponente</th>
<th>Massefraktion (Mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rest Ca als Apatit</td>
<td>Ca</td>
<td>0,704611</td>
</tr>
<tr>
<td>Alles K als KOH</td>
<td>K</td>
<td>0,809882</td>
</tr>
<tr>
<td>Alles als Mg(OH)₂</td>
<td>Mg</td>
<td>0,439087</td>
</tr>
<tr>
<td>Rest Na als NaOH</td>
<td>Na</td>
<td>1,668345</td>
</tr>
<tr>
<td>Rest C als Na₂CO₃</td>
<td>C</td>
<td>0,002065</td>
</tr>
<tr>
<td>alles SO₄ als Anhydrit</td>
<td>Alles S als SO₄</td>
<td>0,378812 CaSO₄</td>
</tr>
<tr>
<td>Cl⁻ abzügl. CdCl₂ als NaCl</td>
<td>Cl⁻</td>
<td>0,416544</td>
</tr>
<tr>
<td>Alles als Al(OH)₃</td>
<td>Al</td>
<td>0,848728</td>
</tr>
<tr>
<td>Alles als SiO₂</td>
<td>Si</td>
<td>1,258657</td>
</tr>
<tr>
<td>Auerbachs Salz</td>
<td>Pb</td>
<td>0,011873</td>
</tr>
<tr>
<td>Alles als ZnO</td>
<td>Zn</td>
<td>0,370898</td>
</tr>
<tr>
<td>Alles als CdCl₂</td>
<td>Cd</td>
<td>0,000400</td>
</tr>
<tr>
<td>Alles als Fe(OH)₂</td>
<td>Fe</td>
<td>1,031550</td>
</tr>
</tbody>
</table>

Durch Fettdruck hervorgehobene Phasen wurden mittels RDA nachgewiesen.

Die anschließende geochemische Modellierung mit EQ6 (Abb. 6.101 bis Abb. 6.103) musste auch hier mit Unterdrückung einiger Bodenkörper vorgenommen werden.

6.4.4.1 Vergleich der experimentellen Ergebnisse des LISA-Versuchs mit der geochemischen Modellierung

Eine Anpassung der Modellierung an die Analysenergebnisse des LISA-Versuchs gelingt hier genauso wenig, wie bei den drei vorhergehenden Versuchen, da ab der 5. Probennahme nahezu keine Veränderungen mehr zu beobachten sind (Abb. 6.104 bis Abb. 6.107).
Abb. 6.101 Entwicklung der Hauptelemente in Lösung bei der Modellierung der Reaktion des Abfalls CA608 mit IP21 im zi-Intervall 0 bis 1,3 entsprechend 0 bis 1,3 kg Abfall pro 1 Liter Wasser in der Ausgangslösung

Oben: Gleichgewichtsmodellierung
Unten: Unterdrückung der Phasen Sphalerit, Simonkolleit, Willemit, K$_2$ZnCl$_4$, Na$_2$ZnCl$_4$·3H$_2$O, Zinkit, Zn(OH)$_2$, Laurionit
Abb. 6.102 Entwicklung des pH-Wertes und des Wassergehaltes der Lösung bei der Modellierung der Reaktion des Abfalls CA608 mit IP21-Lösung im z_i-Interval 0 bis 1,3 entsprechend 0 bis 1,3 kg Abfall pro Liter Wasser in der Ausgangslösung
Oben: Gleichgewichtsmodellierung
Unten: Unterdrückung der Phasen Sphalerit, Simonkolleit, Willemit, K_2ZnCl_4, Na_2ZnCl_4\cdot3H_2O, Zinkit, Zn(OH)_2, Laurionit
Abb. 6.103 Entwicklung Pb, Zn und Cd in Lösung bei der Modellierung der Reaktion des Abfalls CA608 mit IP21 im z_i-Intervall 0 bis 1,3 entsprechend 0 bis 1,3 kg Abfall pro 1 Liter Wasser in der Ausgangslösung

Oben: Gleichgewichtsmodellierung

Unten: Unterdrückung der Phasen Sphalerit, Simonkolleit, Willemit, K_2ZnCl_4, $Na_2ZnCl_4\cdot3H_2O$, Zinkit, $Zn(OH)_2$, Laurionit
Abb. 6.104 Vergleich der Entwicklung der Hauptelemente in Lösung in Lisa-Versuchen und in der geochemischen Gleichgewichtsmodellierung

Abb. 6.105 Anpassung der Hauptelemente aus der geochemischen Modellierung an die experimentellen Ergebnisse
Abb. 6.106 Vergleich der Entwicklung der Pb-, Zn- und Cd-Gehalte in Lösung in Lisa-Versuchen und in der geochemischen Gleichgewichtsmodellierung

Abb. 6.107 Anpassung der Pb-, Zn- und Cd-Gehalte aus der geochemischen Modellierung an die experimentellen Ergebnisse
6.4.4.2 Vergleich der experimentellen Ergebnisse der Batch-Versuche mit der geochemischen Modellierung

Die Anpassung der Modellierung an die Ergebnisse der Batch-Versuche gelingt auch hier nach dem gleichen Verfahren wie bei CA528, CA539 und CA606 (Abb. 6.108 bis Abb. 6.111). Mit der spezifischen Anpassung der s/f-Werte für die Schwermetalle Pb, Zn und Cd lassen sich auch hier die Versuchsergebnisse sehr gut nachmodellieren.

Abb. 6.108 Vergleich der Entwicklung der Hauptelemente in Lösungen der Batch-Versuche und in der geochemischen Gleichgewichtsmodellierung
Abb. 6.109 Vergleich der Hauptelemente aus der angepassten geochemischen Modellierung mit den experimentellen Ergebnissen der Batch-Versuche
Unterdrückung der Phasen Sphalerit, Simonkolleit, Willemite, K₂ZnCl₄, Na₂ZnCl₄-3H₂O, Zinkit, Zn(OH)₂, Laurionit

Abb. 6.110 Vergleich der Entwicklung der Pb-, Zn- und Cd-Gehalte in Lösung in Batch-Versuchen und in der Gleichgewichtsmodellierung
Abb. 6.111 Anpassung der Pb-, Zn- und Cd-Gehalte aus der geochemischen Modellierung an die experimentellen Ergebnisse der Batch-Versuche

6.4.5 Ableitbare Aussagen aus der Anpassung der geochemischen Modellierung an die experimentellen Ergebnisse

Die Schlussfolgerungen aus der Anpassung sind die gleichen wie in Kap. 6.1.5, Kap. 6.2.5 und Kap. 6.3.5: Der LISA-Versuch erfüllt nicht die Erwartungen, da infolge Aushärtens die Lösungsvorgänge sehr schnell praktisch zum Stillstand kommen, die Batch-Versuche lassen sich gut modellieren und aus der Anpassung ergeben sich die in Tab. 6.40 aufgeführten elementspezifischen Verfügbarkeiten, die allerdings immer nur für diese eine Kombination von Feststoff und Auslauglösung gelten.

Tab. 6.40 Elementspezifische Verfügbarkeiten der Schwermetalle Pb, Zn und Cd, abgeleitet aus der Anpassung der geochemischen Modellierung an die Batch-Versuche des Abfalls CA606 mit IP21-Lösung

<table>
<thead>
<tr>
<th>Element</th>
<th>Verfügbarkeit (84 Tage)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pb</td>
<td>70 %</td>
</tr>
<tr>
<td>Zn</td>
<td>10 %</td>
</tr>
<tr>
<td>Cd</td>
<td>25 %</td>
</tr>
</tbody>
</table>
6.5 Veränderungen der Schwermetalllöslichkeiten mit dem pH-Wert

Aus den geochemischen Modellierungen der hier betrachteten Abfallstoffe CA528, CA539 und CA608 lässt sich ablesen, dass bei höherem s/f die Löslichkeiten für die Schwermetalle zunächst sehr weit heruntergehen (Abb. 6.20, Abb. 6.47 und Abb. 6.103) und dann bei gleichzeitig steigenden pH-Werten wieder ansteigen (entsprechend der prinzipiellen Darstellung in Tab. 2.1). Diese Löslichkeitsänderungen gehen einher mit einer Änderung des pH-Werts, der in diesem Bereich meist um etwa 1,5 bis 3 Einheiten ansteigt (Abb. 6.19, Abb. 6.46 und Abb. 6.102).

Die s/f-Werte, bei denen dies auftritt, sind jedoch so groß, dass sie in Laborversuchen so nicht immer erreicht werden können. Deshalb wurde Modellierungen durchgeführt, bei der der pH-Wert durch Zugabe von 4 mol NaOH je kg CA508 erhöht wurde, um an dieser relativ einfachen Reaktion den Zusammenhang zwischen pH-Wert und s/f = z_ı zu zeigen (Beispiel Abb. 6.112).

Abb. 6.112 Beispiel: Gleichgewichtsmodellierung CA528 mit IP21 unter Zusatz von NaOH, hier 160 g ≈ 4 mol/kg CA528

Das in Abb. 6.112 dargestellte Beispiel sagt bei einem z_ı = s/f von 0,83 bis 0,93 für alle drei betrachteten Schwermetalle Konzentrationen deutlich unter 10^{-4} mol/kg Wasser
voraus. Ein s/f von ~0,9 wurde auch bei den Versuchen mit CA528 eingesetzt. Machbar ist folglich also auch ein praktischer Versuch, um dieses theoretische Ergebnis zu bestätigen.

6.5.1 Batchversuche mit CA528 mit NaOH-Zugabe

Dass eine Schwermetallreduzierung durch Veränderung der pH-Bedingungen bei der Auslaugung auch praktisch möglich ist, wurde am Beispiel des Abfalls CA528 demonstriert.

Dazu wurden Batchversuche angesetzt, bei denen der pH-Wert der Auslauglösung bei einem s/f-Verhältnis von 0,45 durch Zugabe von NaOH auf 9 bzw. 11,5 eingestellt wurde. Die Lösungen wurden nach einer Reaktionszeit von 28 Tagen analysiert und die Schwermetallgehalte mit denen aus Kap. 6.1.2 bei pH 5,6 verglichen (Tab. 6.41, Abb. 6.113).

Tab. 6.41 Vergleich der Schwermetallgehalte bei manipuliertem pH-Wert

<table>
<thead>
<tr>
<th>pH-Wert</th>
<th>pH 5,6 Lab.-Nr. 30371.1</th>
<th>pH 9</th>
<th>pH 11,5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cadmium [mol/kg H₂O]</td>
<td>2,0500⋅10⁻⁰⁴</td>
<td>2,5263⋅10⁻⁰⁵</td>
<td>1,0775⋅10⁻⁰⁵</td>
</tr>
<tr>
<td>Blei [mol/kg H₂O]</td>
<td>7,2400⋅10⁻⁰³</td>
<td>7,7684⋅10⁻⁰⁵</td>
<td>2,5244⋅10⁻⁰⁵</td>
</tr>
<tr>
<td>Zink [mol/kg H₂O]</td>
<td>1,8100⋅10⁻⁰²</td>
<td>n.b.</td>
<td>n.b.</td>
</tr>
</tbody>
</table>

n. b. = nicht bestimmbar, d. h. unterhalb der Bestimmungsgrenze

Tab. 6.42 Relative Reduktion der Schwermetallgehalte durch Zugabe von NaOH, bezogen auf das Eluat des reinen Abfalls CA528

<table>
<thead>
<tr>
<th>pH-Wert</th>
<th>pH 5,6</th>
<th>pH 9</th>
<th>pH 11,5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cd</td>
<td>0,0 %</td>
<td>87,6 %</td>
<td>94,7 %</td>
</tr>
<tr>
<td>Pb</td>
<td>0,0 %</td>
<td>98,9 %</td>
<td>99,7 %</td>
</tr>
<tr>
<td>Zn</td>
<td>0,0 %</td>
<td>100,0 %</td>
<td>100,0 %</td>
</tr>
</tbody>
</table>
Abb. 6.113 Reduzierung der eluierbaren Schwermetallgehalte durch pH-Wert-erhöhung (Zugabe von NaOH)

Wie man der Abb. 6.113 und der Tab. 6.42 entnehmen kann, beträgt der Reduktionseffekt beim Cadmium fast rund 90 % bei pH 9 und etwa 95 % bei pH 11,5. Beim Blei sind es bei pH 9 schon 99 % und bei pH 11,5 sogar fast 100 %. Die größte Reduktion zeigt sich bei Zink, dass in den alkalischen Lösungen nicht mehr bestimmbare, so dass man eine praktisch 100%-ige Reduktion erhält.

Damit erweist sich die Beeinflussung des pH-Wertes als ein geeignetes Mittel zur Reduktion der Mobilisierbarkeit von Schwermetallen aus chemisch-toxischen Abfällen.

Damit nun aber zum Erreichen solcher pH-Werte nicht Zuschlagstoffe verwendet werden müssen, scheint es naheliegend, stattdessen einen zweiten Abfallstoff einzusetzen, der für seine alkalische Reaktion bekannt ist, und oftmals auch in der gleichen Deponie abgelagert wird, z. B. eine Braunkohlenflugasche.

6.5.2 Batch-Versuche mit Mischungen aus CA528 und CA400

Für Überprüfung der Eignung von Braunkohlenflugasche (BFA) als Zuschlagstoff zur Reduzierung der Mobilisierbarkeit von Schwermetallen wurde die Abfallprobe CA400 eingesetzt (Tab. 4.2).
Diese Braunkohlenflugasche enthält ähnliche Anteile an Cadmium und Zink wie CA528, aber keine nachweisbaren Bleianteile. Die hohen Gehalte an Aluminium und Calcium liegen überwiegend in oxidischer Form vor. Dieser Abfall reagiert mit Wasser stark alkalisch.

Für die Batch-Versuche wurden CA528 und CA400 in den Verhältnissen 1:1, 1:2 und 1:4 gemischt und in dem von den vorhergegangenen Versuchen bekannten Verhältnis 1:2,2 (entsprechend s/f = 0,45) mit IP21-Lösung versetzt. Der pH-Wert wurde zu Beginn und am Ende der Versuche bestimmt. Die Ergebnisse sind der Tab. 6.43 und der Abb. 6.114 zu entnehmen.

Tab. 6.43 Schwermetallgehalte der Lösungen CA528/CA400 mit IP 21 in Abhängigkeit vom Mischungsverhältnis nach 28 Tagen Reaktionszeit

<table>
<thead>
<tr>
<th>CA528 / CA400</th>
<th>1 / 0</th>
<th>1 / 1</th>
<th>1 / 2</th>
<th>1 / 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH zu Beginn</td>
<td>4,5</td>
<td>6,5</td>
<td>6,6</td>
<td>6,6</td>
</tr>
<tr>
<td>pH nach 28 Tagen</td>
<td>5,6</td>
<td>8,2</td>
<td>8,5</td>
<td>8,8</td>
</tr>
<tr>
<td>Cadmium [mol/kg H₂O]</td>
<td>2,0500·10⁻⁰⁴</td>
<td>2,1767·10⁻⁰⁵</td>
<td>7,8616·10⁻⁰⁶</td>
<td>n.b.</td>
</tr>
<tr>
<td>Blei [mol/kg H₂O]</td>
<td>7,2400·10⁻⁰³</td>
<td>7,3714·10⁻⁰⁴</td>
<td>2,6533·10⁻⁰⁴</td>
<td>3,8104·10⁻⁰⁵</td>
</tr>
<tr>
<td>Zink [mol/kg H₂O]</td>
<td>1,8100·10⁻⁰²</td>
<td>1,1245·10⁻⁰³</td>
<td>4,6866·10⁻⁰⁴</td>
<td>1,8925·10⁻⁰⁵</td>
</tr>
</tbody>
</table>

n. b. = nicht bestimmbar, d. h. unterhalb der Bestimmungsgrenze

Abb. 6.114 Abhängigkeit der Schwermetallgehalte der Eluate vom Mischungsverhältnis CA528/CA400
Durch die Zugabe von CA400 zu CA528 ergibt sich zwar für den gemischten Feststoff bereits eine erste Verdünnung des Gesamtbleigehalts. Dieser sinkt im Feststoff je nach Mischungsverhältnis auf 50 %, 33 % bzw. 20 % des Ausgangswertes des reinen CA528. Bei Cadmium und Zink ist der Effekt umgekehrt, d. h., die Gehalte steigen im gemischten Feststoff geringfügig, da in CA400 etwas mehr enthalten ist.

Dennoch kann man bei Cadmium und Blei nahezu die gleiche Reduktion der Gehalte beobachten wie bei der Zugabe von NaOH zu CA528 (Abb. 6.114, Tab. 6.44); die Konzentrationen sinken etwa 90 %, 96 % bzw. 99,5 %, bei Cadmium in der letzten Stufe sogar um praktisch 100 %. Bei Zink ist die Reduktion etwas stärker als bei Blei, hier gehen ca. 94 %, 97,5 % und 99,9 % nicht mehr in Lösung, je nach Mischung.

Tab. 6.44 Relative Reduktion der Schwermetallgehalte durch Zugabe von CA400, bezogen auf das Eluat des reinen Abfalls CA528

<table>
<thead>
<tr>
<th></th>
<th>CA528/CA400</th>
<th>CA528/CA400</th>
<th>CA528/CA400</th>
<th>CA528/CA400</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>pH 5,6</td>
<td>pH 8,2</td>
<td>pH 8,5</td>
<td>pH 8,8</td>
</tr>
<tr>
<td>Cd</td>
<td>0,0</td>
<td>89,4 %</td>
<td>96,12 %</td>
<td>100,0 %</td>
</tr>
<tr>
<td>Pb</td>
<td>0,0</td>
<td>89,8 %</td>
<td>96,4 %</td>
<td>99,5 %</td>
</tr>
<tr>
<td>Zn</td>
<td>0,0</td>
<td>93,8 %</td>
<td>97,4 %</td>
<td>99,9 %</td>
</tr>
</tbody>
</table>

6.5.3 Schlussfolgerungen

Die hier vorgestellten Ergebnisse belegen zum einen, dass die mit der geochemischen Modellierung vorhergesagten niedrigeren Löslichkeiten der Schwermetalle Cadmium, Blei und Zink auch real zu erreichen sind. Dies bedeutet, dass mit der Modellierung, zumindest für die hier betrachteten Schwermetalle, relativ verlässliche Vorhersagen möglich sind.

Außerdem zeigt sich, dass es nicht nur theoretisch möglich ist, durch geeignete Kombination von schwermetallhaltigen Abfällen die Mobilisierbarkeiten um mindestens zwei Zehnerpotenzen, bei einigen Elementen, wie z. B. bei Zink auch um 4 Zehnerpotenzen zu reduzieren.

Wie die Laborversuche gezeigt haben, lässt sich die Reduzierung der Mobilisierbarkeit bereits in kurzer Zeit erreichen, so dass hierdurch eine zusätzliche Sicherheitsreserve in einer Deponie gegeben wäre.
7 Zusammenfassung

Für die Lisa-Versuche wurde die LISA-Säule mit Abfall gefüllt und Lösung zugegeben. Das eingestellte Lösungs-Feststoffverhältnis (s/f) lag bei 1 kg Abfall zu 1,1 kg Lösung. Die Zelle wurde mit der Hand einmal am Tag gedreht. Die Probennahme erfolgte einmal pro Woche durch Auspressen eines Lösungsvolumens, dass für die Messungen von Dichte, pH-Wert und die Lösungsanalytik ausreichte.

Die experimentell untersuchten Reaktionen wurden mit dem Rechenprogramm EQ3/6 nachmodelliert und mit den experimentellen Ergebnissen verglichen. Dafür wurden neue, in der GRS entwickelte thermodynamische Daten für Pb, Zn, Cd, Si und Al in die Datenbasis integriert.

auch zu verstehen, weshalb sich in den Lisa-Versuchen die Lösungszusammensetzung über die Zeit wenig verändert, wogegen in den Batch-Versuchen die Schwermetallgehalte stark ansteigen.

Daraus ergibt sich die Schwierigkeit, die richtigen Proben miteinander zu vergleichen und diese wiederum mit einem entsprechenden s/f bzw. z, aus der Modellierung zu korrelieren. Verglichen werden können nur Proben, bei denen das s/f bekannt ist und bei denen eine maximale Auslaugung erreicht wurde. Die Lisa-Ergebnisse deuten darauf hin, dass sie, anders als gedacht, nicht auf einem sich kontinuierlich vergrößernden s/f-Verhältnis beruhen, sondern auf einem einheitlichen, das sich ziemlich früh in dem Versuch einstellt und viel niedriger ist, als der Menge des eingesetzten Feststoffs und der Lösung entspricht. Durch das frühe Aushärten des Abfalls im LISA-Versuch kann damit die ursprüngliche Idee, nämlich das s/f zu vergrößern, praktisch nicht realisiert werden. Diese Problematis führt letztendlich dazu, dass verwertbare Aussagen aus LISA-Versuchen nicht oder nur begrenzt erhalten werden können.

Für praktische Belange sind die Randbedingungen in einem Batch-Versuch mit bekanntem s/f, bei dem durch sukzessive Probennahme die maximale Auslaugbarkeit schnell und einfach zu ermitteln ist, also nach wie vor die Methode der Wahl.

Weiterhin wurden Versuche zur Quantifizierung des pH-Einflusses auf die Schwermetallmobilisierung und Versuche zur Reduzierung der Schwermetallmobilisierung durch Mischung von Abfällen durchgeführt. Durch pH-Erhöhung in Abfalleluaten durch Zugabe von NaOH wurde der pH-Wert von 5,6 über 9,5 auf 11 erhöht. Dies hatte zur Folge, dass die Konzentration der Schwermetalle für Cd um 85 %, für Pb um 99 % und für Zn um 100 % reduziert werden konnten. Die Schwermetallgehalte in Lösung gingen für die Flugasche CA528 bei Cd um eine Zehnerpotenz, bei Pb um 2 und bei Zn um vier Zehnerpotenzen herunter.

Realitätsnähere Versuche wurden mit Abfallmischungen durchgeführt. Durch die Mischung zweier Flugaschen konnte der pH-Wert von 6,5 auf 8,8 erhöht werden. Dadurch ergab sich eine Reduzierung der Pb-Gehalte in Lösung um 98 % bzw. zwei Zehnerpotenzen, der Zn-Gehalte um 99,7 % bzw. drei Zehnerpotenzen und der Cd-Gehalte um 100 %.

Aus Sicht der GRS wurden die Ziele dieses Vorhaben somit erreicht. Zusammenfassend wird festgestellt:
Ein in der GRS neu entwickeltes Auslaugverfahren (LISA-Versuche) wurde mit dem ebenfalls in der GRS entwickelten Kaskadenauslaugverfahren (Batch-Versuche) verglichen. Als Ergebnis hat sich gezeigt, dass das Kaskadenauslaugverfahren das für die Praxis geeignetere Verfahren darstellt.

Es wurde demonstriert, dass die Kombination von Batch-Versuchen und geochemischer Modellierung geeignet ist, das Kurz- und Langzeitverhalten der betrachteten Schwermetalle in einer UTD zu beschreiben.

Es konnte weiterhin gezeigt werden, dass tatsächlich nur die Kombination beider Verfahren (Versuche und Modellierung) zielführend ist. Versuche allein beschreiben das Kurzzeitverhalten. Kann dieses durch die geochemische Modellierung, mit Unterdrückung kinetisch gehemmter Mineralphasen richtig beschrieben werden, ergibt sich aus der anschließenden Gleichgewichtsmodellierung das Langzeitverhalten.

Eine einfache und praxistaugliche Strategie zur Reduzierung der Mobilisierbarkeit der Schwermetalle Pb, Zn und Cd aus untertägig abgelagerten Abfällen wurde entwickelt und steht bei Bedarf für die Anwendung bereit. Diese besteht in der geeigneten Mischung von Abfällen, die bei Lösungszutritt in eine UTD ein chemisches Milieu ergeben, das die Schadstofflöslichkeit auf ein Minimum reduziert. Die Festlegung geeigneter Mischungen kann durch einfache Batch-Versuche und geochemische Modellierung erreicht werden.
Literatur

Abbildungsverzeichnis

Abb. 2.1 Spezifische Oberflächen und spezifische Verwitterungsgraten bei pH 5 von Mineralphasen .. 8

Abb. 2.2 Entwicklung der Bleikonzentration in Lösung durch Auslaugung eines Modellabfalls bei gleichzeitig auftretender schneller und langsamer Freisetzungsreaktion .. 9

Abb. 3.1 Schema des ELISA-Versuchs ... 14

Abb. 3.2 Unterschiedliche Entwicklung der Bleikonzentrationen in Lösung für einen langfristigen Batch-Versuch und einen ELISA-Versuch 15

Abb. 3.3 Die ELISA-Zelle im Einsatz ... 15

Abb. 3.4 Centrex-Röhrchen (links) für Batch-Versuche im Überkopfschüttler (rechts) ... 16

Abb. 6.1 Kumulierter relativer Lösungsaustrag aus dem LISA-Versuch infolge wiederholter Probennahme; Bild oben: Darstellung über die Zeit, Bild unten: Darstellung des sich verändernden Feststoff-Lösungsverhältnisses .. 44

Abb. 6.2 Zeitliche Entwicklung der Feststoff-Lösungsverhältnisse im Lisa-Versuch „Abfall CA528 mit IP21-Lösung“ ... 45

Abb. 6.3 Entwicklung der Lösungsdichte und der Wassergehalte in der Lösung im Lisa-Versuch „Abfall CA528 mit IP21-Lösung“ mit fortschreitender Reaktionszeit und Probennahme 45

Abb. 6.4 Zeitliche Entwicklung der Hauptelementgehalte in der Lösung im Lisa-Versuch „Abfall CA528 mit IP21-Lösung“ ... 46

Abb. 6.5 Zeitliche Entwicklung des pH-Wertes in der Lösung im Lisa-Versuch „Abfall CA528 mit IP21-Lösung“ ... 46

Abb. 6.6 Zeitliche Entwicklung der Schwermetallgehalte in der Lösung im Lisa-Versuch „Abfall CA528 mit IP21-Lösung“ ... 47

Abb. 6.7 Zeitliche Entwicklung Kumulierter Austrag von Schwermetallen aus dem Abfall in die Lösung im Lisa-Versuch „Abfall CA528 mit IP21-Lösung“ .. 47
Abb. 6.8 Zeitliche Entwicklung der elementspezifischen Auslaugbarkeiten der Schwermetalle Pb, Zn und Cd im Lisa-Versuch „Abfall CA528 mit IP21-Lösung“ ... 48

Abb. 6.9 Zeitliche Entwicklung der Hauptelementgehalte der Lösungen in den Batch-Versuchen „Abfall CA528 mit IP21-Lösung“ bei einem Feststoff-Lösungsverhältnis von 0,227 ... 51

Abb. 6.10 Zeitliche Entwicklung der Hauptelementgehalte der Lösungen in den Batch-Versuchen „Abfall CA528 mit IP21-Lösung“ bei einem Feststoff-Lösungsverhältnis von 0,303 ... 51

Abb. 6.11 Zeitliche Entwicklung der Hauptelementgehalte der Lösungen in den Batch-Versuchen „Abfall CA528 mit IP21-Lösung“ bei einem Feststoff-Lösungsverhältnis von 0,455 ... 52

Abb. 6.12 Zeitliche Entwicklung der Hauptelementgehalte der Lösungen in den Batch-Versuchen „Abfall C5A28 mit IP21-Lösung“ bei einem Feststoff-Lösungsverhältnis von 0,902 ... 52

Abb. 6.13 Zeitliche Entwicklung von Pb in den Lösungen der Batch-Versuche „Abfall CA528 mit IP21-Lösung“ bei den Feststoff-Lösungsverhältnissen von 0,227, 0,303, 0,455 und 0,902 ... 53

Abb. 6.14 Zeitliche Entwicklung von Zn in den Lösungen der Batch-Versuche „Abfall CA528 mit IP21-Lösung“ bei den Feststoff-Lösungsverhältnissen von 0,207, 0,303, 0,455 und 0,902 ... 53

Abb. 6.15 Zeitliche Entwicklung von Cd in den Lösungen der Batch-Versuche „Abfall CA528 mit IP21-Lösung“ bei den Feststoff-Lösungsverhältnissen von 0,227, 0,303, 0,455 und 0,902 ... 54

Abb. 6.16 Vergleich der zeitlichen Entwicklung der Hauptelemente in Lisa und Batch-Versuchen bei einem anfänglichen Feststoff-Lösungsverhältnis von 0,9 ... 55

Abb. 6.17 Vergleich der zeitlichen Entwicklung der Pb-, Zn- und Cd-Gehalte aus Lisa und Batch-Versuchen bei einem anfänglichen Feststoff-Lösungsverhältnis von 0,9 ... 56
Abb. 6.18 Entwicklung der Hauptelemente in Lösung bei der Modellierung der Reaktion des Abfalls CA528 mit IP21 im z-Intervall 0 bis 4 entsprechend 0 bis 4 kg Abfall pro 1 Liter Wasser in der Ausgangslösung ... 58

Abb. 6.19 Entwicklung des pH-Wertes und des Wassergehaltes der Lösung bei der Modellierung der Reaktion des Abfalls CA528 mit IP21-Lösung im z-Intervall 0 bis 4 entsprechend 0 bis 4 kg Abfall pro Liter Wasser in der Ausgangslösung ... 59

Abb. 6.20 Entwicklung Pb, Zn und Cd in Lösung bei der Modellierung der Reaktion des Abfalls CA528 mit IP21 im z-Intervall 0 bis 4 entsprechend 0 bis 4 kg Abfall pro 1 Liter Wasser in der Ausgangslösung ... 60

Abb. 6.21 Vergleich der Entwicklung der Hauptelemente in Lösung in Lisa-Versuchen und in der geochemischen Gleichgewichtsmodellierung ... 61

Abb. 6.22 Anpassung der Hauptelemente aus der geochemischen Modellierung an die experimentellen Ergebnisse ... 62

Abb. 6.23 Vergleich der Entwicklung der Pb-, Zn- und Cd-Gehalte in Lösung in Lisa-Versuchen und in der geochemischen Gleichgewichtsmodellierung ... 63

Abb. 6.24 Anpassung der Pb-, Zn- und Cd-Gehalte aus der geochemischen Modellierung an die experimentellen Ergebnisse ... 63

Abb. 6.25 Vergleich der Entwicklung der Hauptelemente in Lösungen der Batch-Versuche und in der geochemischen Modellierung ... 65

Abb. 6.26 Vergleich der Entwicklung der Pb-, Zn- und Cd-Gehalte in Lösung in Batch-Versuchen und in der geochemischen Gleichgewichtsmodellierung ... 66

Abb. 6.27 Anpassung der Pb-, Zn- und Cd-Gehalte aus der geochemischen Modellierung an die experimentellen Ergebnisse durch Unterdrückung der Phasen Simonkolleit, Polyhalit, Willemit, KCl-2PbCl2, 3KCl-3PbCl2·H2O, Laurionit, Blixit, Alamosit und elementspezifische s/f-Werte ... 67

Abb. 6.28 Kumulierter relativer Lösungsaustrag aus dem LISA-Versuch infolge wiederholter Probennahme; ... 73
Abb. 6.29 Zeitliche Entwicklung der Feststoff-Lösungsverhältnisse im Lisa-Versuch „Abfall CA539 mit IP21-Lösung” 74

Abb. 6.30 Entwicklung der Lösungsdichte und der Wassergehalte in der Lösung im Lisa-Versuch „Abfall CA539 mit IP21-Lösung” mit fortschreitender Reaktionszeit und Probennahme 74

Abb. 6.31 Zeitliche Entwicklung der Hauptelementgehalte in der Lösung im Lisa-Versuch „Abfall CA539 mit IP21-Lösung” .. 75

Abb. 6.32 Zeitliche Entwicklung des pH-Wertes in der Lösung im Lisa-Versuch „Abfall CA539 mit IP21-Lösung” ... 75

Abb. 6.33 Zeitliche Entwicklung der Schwermetallgehalte in der Lösung im Lisa-Versuch „Abfall CA539 mit IP21-Lösung” .. 76

Abb. 6.34 Zeitliche Entwicklung des Kumulierten Austrags von Schwermetallen aus dem Abfall in die Lösung im Lisa-Versuch „Abfall CA539 mit IP21-Lösung” ... 76

Abb. 6.35 Zeitliche Entwicklung der elementspezifischen Auslaugbarkeiten der Schwermetalle Pb, Zn und Cd im Lisa-Versuch „Abfall CA539 mit IP21-Lösung” ... 77

Abb. 6.36 Zeitliche Entwicklung der Hauptelementgehalte der Lösungen in den Batch-Versuchen „Abfall CA539 mit IP21-Lösung” bei einem Feststoff-Lösungsverhältnis von 0,278 .. 80

Abb. 6.37 Zeitliche Entwicklung der Hauptelementgehalte der Lösungen in den Batch-Versuchen „Abfall CA539 mit IP21-Lösung” bei einem Feststoff-Lösungsverhältnis von 0,370 .. 80

Abb. 6.38 Zeitliche Entwicklung der Hauptelementgehalte der Lösungen in den Batch-Versuchen „Abfall CA539 mit IP21-Lösung” bei einem Feststoff-Lösungsverhältnis von 0,556 .. 81

Abb. 6.39 Zeitliche Entwicklung der Hauptelementgehalte der Lösungen in den Batch-Versuchen „Abfall CA539 mit IP21-Lösung” bei einem Feststoff-Lösungsverhältnis von 1,112 .. 81

Abb. 6.40 Zeitliche Entwicklung von Pb in den Lösungen der Batch-Versuche „Abfall CA539 mit IP21-Lösung” bei den Feststoff-Lösungsverhältnissen von 0,278, 0,370, 0,556 und 1,112 .. 82
Abb. 6.41 Zeitliche Entwicklung von Zn in den Lösungen der Batch-Versuche „Abfall CA539 mit IP21-Lösung“ bei den Feststoff-Lösungsverhältnissen von 0,278, 0,370, 0,556 und 1,112 ... 82

Abb. 6.42 Zeitliche Entwicklung von Cd in den Lösungen der Batch-Versuche „Abfall CA539 mit IP21-Lösung“ bei den Feststoff-Lösungsverhältnissen von 0,278, 0,370, 0,556 und 1,112 ... 83

Abb. 6.43 Vergleich der zeitlichen Entwicklung der Hauptelemente in Lisa und Batch-Versuchen bei einem anfänglichen Feststoff-Lösungsverhältnis von 1,112 ... 84

Abb. 6.44 Vergleich der zeitlichen Entwicklung der Pb-, Zn- und Cd-Gehalte aus Lisa und Batch-Versuchen bei einem anfänglichen Feststoff-Lösungsverhältnis von 1,112 ... 84

Abb. 6.45 Entwicklung der Hauptelemente in Lösung bei der Modellierung der Reaktion des Abfalls CA539 mit IP21 im zi-Intervall 0 bis 3 entsprechend 0 bis 3 kg Abfall pro 1 Liter Wasser in der Ausgangslösung .. 86

Abb. 6.46 Entwicklung des pH-Wertes und des Wassergehaltes der Lösung bei der Modellierung der Reaktion des Abfalls CA539 mit IP21-Lösung im zi-Intervall 0 bis 3 entsprechend 0 bis 3 kg Abfall pro Liter Wasser in der Ausgangslösung .. 87

Abb. 6.47 Entwicklung Pb, Zn und Cd in Lösung bei der Modellierung (oben) der Reaktion des Abfalls CA539 mit IP21 im zi-Intervall 0 bis 3 entsprechend 0 bis 3 kg Abfall pro 1 Liter Wasser in der Ausgangslösung .. 88

Abb. 6.48 Vergleich der Entwicklung der Hauptelemente in Lösung in Lisa-Versuchen und in der geochemischen Gleichgewichtsmodellierung 89

Abb. 6.49 Anpassung der Hauptelemente aus der geochemischen Modellierung an die experimentellen Ergebnisse ... 89

Abb. 6.50 Vergleich der Entwicklung der Pb-, Zn- und Cd-Gehalte in Lösung in Lisa-Versuchen und in der geochemischen Gleichgewichtsmodellierung .. 90

Abb. 6.51 Anpassung der Pb-, Zn- und Cd-Gehalte aus der geochemischen Modellierung an die experimentellen Ergebnisse ... 90
Abb. 6.52 Vergleich der Entwicklung der Hauptelemente in Lösungen der Batch-Versuche und in der geochemischen Gleichgewichtsmodellierung ... 91

Abb. 6.53 Vergleich der Hauptelemente aus der angepassten geochemischen Modellierung mit den experimentellen Ergebnissen 92

Abb. 6.54 Entwicklung der Pb-, Zn- und Cd-Gehalte in Lösung in Batch-Versuchen und in der geochemischen Gleichgewichtsmodellierung 92

Abb. 6.55 Anpassung der Pb-, Zn- und Cd-Gehalte aus der geochemischen Modellierung an die experimentellen Ergebnisse 93

Abb. 6.56 Kumulierter relationaler Lösungsaustausch aus dem LISA-Versuch infolge wiederholter Probennahme; .. 99

Abb. 6.57 Zeitliche Entwicklung der Feststoff-Lösungsverhältnisse im LISA-Versuch „Abfall CA606 mit IP21-Lösung“ ... 100

Abb. 6.58 Entwicklung der Lösungsdichte und der Wassergehalte in der Lösung im LISA-Versuch „Abfall CA606 mit IP21-Lösung“ mit fortschreitender Reaktionszeit und Probennahme 100

Abb. 6.59 Zeitliche Entwicklung der Hauptelementgehalte in der Lösung im LISA-Versuch „Abfall CA606 mit IP21-Lösung“ ... 101

Abb. 6.60 Zeitliche Entwicklung des pH-Wertes in der Lösung im LISA-Versuch „Abfall CA606 mit IP21-Lösung“ ... 101

Abb. 6.61 Zeitliche Entwicklung der Schwermetallgehalte in der Lösung im LISA-Versuch „Abfall CA606 mit IP21-Lösung“ 102

Abb. 6.62 Zeitliche Entwicklung Kumulierter Austrag von Schwermetallen aus dem Abfall in die Lösung im LISA-Versuch „Abfall CA606 mit IP21-Lösung“ .. 102

Abb. 6.63 Zeitliche Entwicklung der elementspezifischen Auslaugbarkeiten der Schwermetalle Pb, Zn und Cd im LISA-Versuch „Abfall CA606 mit IP21-Lösung“ .. 103

Abb. 6.64 Zeitliche Entwicklung der Hauptelementgehalte der Lösungen in den Batch-Versuchen „Abfall CA606 mit IP21-Lösung“ bei einem Feststoff-Lösungsverhältnis von 0,156 ... 106
Abb. 6.65 Zeitliche Entwicklung der Hauptelementgehalte der Lösungen in den Batch-Versuchen „Abfall CA606 mit IP21-Lösung“ bei einem Feststoff-Lösungsverhältnis von 0,208 ... 106

Abb. 6.66 Zeitliche Entwicklung der Hauptelementgehalte der Lösungen in den Batch-Versuchen „Abfall CA606 mit IP21-Lösung“ bei einem Feststoff-Lösungsverhältnis von 0,278 ... 107

Abb. 6.67 Zeitliche Entwicklung der Hauptelementgehalte der Lösungen in den Batch-Versuchen „Abfall CA606 mit IP21-Lösung“ bei einem Feststoff-Lösungsverhältnis von 0,556 ... 107

Abb. 6.68 Zeitliche Entwicklung von Pb in den Lösungen der Batch-Versuche „Abfall CA606 mit IP21-Lösung“ bei den Feststoff-Lösungsverhältnissen von 0,156, 0,208, 0,278 und 0,556 .. 108

Abb. 6.69 Zeitliche Entwicklung von Zn in den Lösungen der Batch-Versuche „Abfall CA606 mit IP21-Lösung“ bei den Feststoff-Lösungsverhältnissen von 0,156, 0,208, 0,278 und 0,556 .. 108

Abb. 6.70 Zeitliche Entwicklung von Cd in den Lösungen der Batch-Versuche „Abfall CA606 mit IP21-Lösung“ bei den Feststoff-Lösungsverhältnissen von 0,156, 0,208, 0,278 und 0,556 .. 109

Abb. 6.71 Vergleich der zeitlichen Entwicklung der Hauptelemente in Lisa und Batch-Versuchen bei einem anfänglichen Feststoff-Lösungsverhältnis von 0,556 .. 110

Abb. 6.72 Vergleich der zeitlichen Entwicklung der Pb-, Zn- und Cd-Gehalte aus Lisa und Batch-Versuchen bei einem anfänglichen Feststoff-Lösungsverhältnis von 0,556 .. 110

Abb. 6.73 Entwicklung der Hauptelemente in Lösung bei der Modellierung der Reaktion des Abfalls CA606 mit IP21 im z-Intervall 0 bis 1,6 entsprechend 0 bis 1,6 kg Abfall pro 1 Liter Wasser in der Ausgangslösung ... 112

Abb. 6.74 Entwicklung des pH-Wertes und des Wassergehaltes der Lösung bei der Modellierung der Reaktion des Abfalls CA606 mit IP21-Lösung im z-Intervall 0 bis 1,6 entsprechend 0 bis 1,6 kg Abfall pro Liter Wasser in der Ausgangslösung ... 113
Abb. 6.75 Entwicklung Pb, Zn und Cd in Lösung bei der Modellierung (oben) der Reaktion des Abfalls CA606 mit IP21 im z-Intervall 0 bis 1,6 entsprechend 0 bis 1,6 kg Abfall pro 1 Liter Wasser in der Ausgangslösung ... 114

Abb. 6.76 Vergleich der Entwicklung der Hauptelemente in Lösung in Lisa-Versuchen und in der geochemischen Gleichgewichtsmodellierung . . 115

Abb. 6.77 Anpassung der Hauptelemente aus der geochemischen Modellierung an die experimentellen Ergebnisse .. 115

Abb. 6.78 Vergleich der Entwicklung der Pb-, Zn- und Cd-Gehalte in Lösung in Lisa-Versuchen und in der geochemischen Gleichgewichtsmodellierung .. 116

Abb. 6.79 Anpassung der Pb-, Zn- und Cd-Gehalte aus der geochemischen Modellierung an die experimentellen Ergebnisse 116

Abb. 6.80 Vergleich der Entwicklung der Hauptelemente in Lösungen der Batch-Versuche und in der geochemischen Gleichgewichtsmodellierung .. 117

Abb. 6.81 Vergleich der Hauptelemente aus der angepassten geochemischen Modellierung mit den experimentellen Ergebnissen 118

Abb. 6.82 Vergleich der Pb-, Zn- und Cd-Gehalte in Lösung in den Batch-Versuchen und in der geochemischen Gleichgewichtsmodellierung . . 118

Abb. 6.83 Anpassung der Pb-, Zn- und Cd-Gehalte aus der geochemischen Modellierung an die experimentellen Ergebnisse 119

Abb. 6.84 Kumulierter relativer Lösungsaustrag aus dem LISA-Versuch infolge wiederholter Probennahme; ... 124

Abb. 6.85 Zeitliche Entwicklung der Feststoff-Lösungsverhältnisse im Lisa-Versuch „Abfall CA608 mit IP21-Lösung“ .. 125

Abb. 6.86 Entwicklung der Lösungsdichte und der Wassergehalte in der Lösung im Lisa-Versuch „Abfall CA608 mit IP21-Lösung“ mit fortschreitender Reaktionszeit und Probennahme 125

Abb. 6.87 Zeitliche Entwicklung der Hauptelementgehalte in der Lösung im Lisa-Versuch „Abfall CA608 mit IP21-Lösung“ 126
Abb. 6.88 Zeitliche Entwicklung des pH-Wertes in der Lösung im Lisa-Versuch „Abfall CA608 mit IP21-Lösung“... 126
Abb. 6.89 Zeitliche Entwicklung der Schwermetallgehalte in der Lösung im Lisa-Versuch „Abfall CA608 mit IP21-Lösung“.. 127
Abb. 6.90 Zeitliche Entwicklung Kumulierter Austrag von Schwermetallen aus dem Abfall in die Lösung im Lisa-Versuch „Abfall CA606 mit IP21-Lösung“.. 127
Abb. 6.91 Zeitliche Entwicklung der elementspezifischen Auslaugbarkeiten der Schwermetalle Pb, Zn und Cd im Lisa-Versuch „Abfall CA606 mit IP21-Lösung”.. 128
Abb. 6.92 Zeitliche Entwicklung der Haupelementgehalte der Lösungen in den Batch-Versuchen „Abfall CA608 mit IP21-Lösung“ bei einem Feststoff-Lösungsverhältnis von 0,208... 131
Abb. 6.93 Zeitliche Entwicklung der Haupelementgehalte der Lösungen in den Batch-Versuchen „Abfall CA608 mit IP21-Lösung“ bei einem Feststoff-Lösungsverhältnis von 0,278... 131
Abb. 6.94 Zeitliche Entwicklung der Haupelementgehalte der Lösungen in den Batch-Versuchen „Abfall CA608 mit IP21-Lösung“ bei einem Feststoff-Lösungsverhältnis von 0,417... 132
Abb. 6.95 Zeitliche Entwicklung der Haupelementgehalte der Lösungen in den Batch-Versuchen „Abfall CA608 mit IP21-Lösung“ bei einem Feststoff-Lösungsverhältnis von 0,833... 132
Abb. 6.96 Zeitliche Entwicklung von Pb in den Lösungen der Batch-Versuche „Abfall CA608 mit IP21-Lösung“ bei den Feststoff-Lösungsverhältnissen von 0,208, 0,278, 0,417 und 0,833....................... 133
Abb. 6.97 Zeitliche Entwicklung von Zn in den Lösungen der Batch-Versuche „Abfall CA608 mit IP21-Lösung“ bei den Feststoff-Lösungsverhältnissen von 0,208, 0,278, 0,417 und 0,833................................. 133
Abb. 6.98 Zeitliche Entwicklung von Cd in den Lösungen der Batch-Versuche „Abfall CA608 mit IP21-Lösung“ bei den Feststoff-Lösungsverhältnissen von 0,208, 0,278, 0,417 und 0,833................................. 134
Abb. 6.99 Vergleich der zeitlichen Entwicklung der Hauptelemente in Lisa und Batch-Versuchen bei einem anfänglichen Feststoff-Lösungsverhältnis von 0,833 .. 135

Abb. 6.100 Vergleich der zeitlichen Entwicklung der Pb-, Zn- und Cd-Gehalte aus Lisa und Batch-Versuchen bei einem anfänglichen Feststoff-Lösungsverhältnis von 0,833 .. 135

Abb. 6.101 Entwicklung der Hauptelemente in Lösung bei der Modellierung der Reaktion des Abfalls CA608 mit IP21 im z-Intervall 0 bis 1,3 entsprechend 0 bis 1,3 kg Abfall pro 1 Liter Wasser in der Ausgangslösung .. 137

Abb. 6.102 Entwicklung des pH-Wertes und des Wassergehaltes der Lösung bei der Modellierung der Reaktion des Abfalls CA608 mit IP21-Lösung im z-Intervall 0 bis 1,3 entsprechend 0 bis 1,3 kg Abfall pro Liter Wasser in der Ausgangslösung .. 138

Abb. 6.103 Entwicklung Pb, Zn und Cd in Lösung bei der Modellierung der Reaktion des Abfalls CA608 mit IP21 im z-Intervall 0 bis 1,3 entsprechend 0 bis 1,3 kg Abfall pro 1 Liter Wasser in der Ausgangslösung .. 139

Abb. 6.104 Vergleich der Entwicklung der Hauptelemente in Lösung in Lisa-Versuchen und in der geochemischen Gleichgewichtsmodellierung .. 140

Abb. 6.105 Anpassung der Hauptelemente aus der geochemischen Modellierung an die experimentellen Ergebnisse .. 140

Abb. 6.106 Vergleich der Entwicklung der Pb-, Zn- und Cd-Gehalte in Lösung in Lisa-Versuchen und in der geochemischen Gleichgewichtsmodellierung .. 141

Abb. 6.107 Anpassung der Pb-, Zn- und Cd-Gehalte aus der geochemischen Modellierung an die experimentellen Ergebnisse .. 141

Abb. 6.108 Vergleich der Entwicklung der Hauptelemente in Lösungen der Batch-Versuche und in der geochemischen Gleichgewichtsmodellierung .. 142

Abb. 6.109 Vergleich der Hauptelemente aus der angepassten geochemischen Modellierung mit den experimentellen Ergebnissen der Batch-Versuche .. 143
Abb. 6.110 Vergleich der Entwicklung der Pb-, Zn- und Cd-Gehalte in Lösung in Batch-Versuchen und in der Gleichgewichtsmodellierung 143
Abb. 6.111 Anpassung der Pb-, Zn- und Cd-Gehalte aus der geochemischen Modellierung an die experimentellen Ergebnisse der Batch-Versuche .. 144
Abb. 6.112 Beispiel: Gleichgewichtsmodellierung CA528 mit IP21 unter Zusatz von NaOH, hier 160 g ≈ 4 mol/kg CA528 ... 145
Abb. 6.113 Reduzierung der eluierbaren Schwermetallgehalte durch pH-Wert erhöhung (Zugabe von NaOH) .. 147
Abb. 6.114 Abhängigkeit der Schwermetallgehalte der Eluate vom Mischungsverhältnis CA528/CA400 .. 148
Tabellenverzeichnis

<table>
<thead>
<tr>
<th>Tabellenbezeichnung</th>
<th>Seitennummer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tab. 2.1 Beziehungen zwischen mobilisierten Schadstoffanteilen und pH-Wert</td>
<td>5</td>
</tr>
<tr>
<td>Tab. 2.2 Modellannahmen zur Berechnung der Schadstofffreisetzungen</td>
<td>7</td>
</tr>
<tr>
<td>Tab. 3.1 Binäre Ionenwechselwirkungskoeffizienten für Zink /HAG 07/</td>
<td>23</td>
</tr>
<tr>
<td>Tab. 3.2 Ternäre Ionenwechselwirkungskoeffizienten für Zink /HAG 07/</td>
<td>23</td>
</tr>
<tr>
<td>Tab. 3.3 Löslichkeitskonstanten neutraler zinkchlorid- und zinksulfathaltiger</td>
<td>24</td>
</tr>
<tr>
<td>Verbindungen</td>
<td></td>
</tr>
<tr>
<td>Tab. 3.4 Löslichkeitskonstanten implementierter Mineralphasen im Zement-</td>
<td>26</td>
</tr>
<tr>
<td>system</td>
<td></td>
</tr>
<tr>
<td>Tab. 3.5 Löslichkeitskonstanten implementierter Tonmineralphasen</td>
<td>26</td>
</tr>
<tr>
<td>Tab. 4.1 Eingesetzte Abfälle und ihre Pb/Zn/Cd-Gehalte</td>
<td>29</td>
</tr>
<tr>
<td>Tab. 4.2 Chemische Zusammensetzung der Abfälle in [mg/kg]</td>
<td>30</td>
</tr>
<tr>
<td>Tab. 4.3 Verwendete Ausgangslösung und ihre Zusammensetzung</td>
<td>31</td>
</tr>
<tr>
<td>Tab. 4.4 Aus dem Analysenergebnis mit EQ3 berechnete Mineral-</td>
<td>31</td>
</tr>
<tr>
<td>sättigungen</td>
<td></td>
</tr>
<tr>
<td>Tab. 6.1 Experimentelle Ergebnisse des LISA-Versuchs zur Reaktion der</td>
<td>40</td>
</tr>
<tr>
<td>Flugasche CA528 mit IP21-Lösung [Teil 1]</td>
<td></td>
</tr>
<tr>
<td>Tab. 6.2 Experimentelle Ergebnisse des LISA-Versuchs zur Reaktion der</td>
<td>40</td>
</tr>
<tr>
<td>Flugasche CA528 mit IP21-Lösung [Teil 2]</td>
<td></td>
</tr>
<tr>
<td>Tab. 6.3 Experimentelle Ergebnisse des LISA-Versuchs zur Reaktion der</td>
<td>41</td>
</tr>
<tr>
<td>Flugasche CA528 mit IP21-Lösung [Teil 3]</td>
<td></td>
</tr>
<tr>
<td>Tab. 6.4 Experimentelle Ergebnisse des LISA-Versuchs zur Reaktion der</td>
<td>41</td>
</tr>
<tr>
<td>Flugasche CA528 mit IP21-Lösung [Teil 4]</td>
<td></td>
</tr>
<tr>
<td>Tab. 6.5 Experimentelle Ergebnisse des LISA-Versuchs zur Reaktion der</td>
<td>42</td>
</tr>
<tr>
<td>Flugasche CA528 mit IP21-Lösung [Teil 5]</td>
<td></td>
</tr>
<tr>
<td>Tab. 6.6 Experimentelle Ergebnisse des LISA-Versuchs zur Reaktion der</td>
<td>42</td>
</tr>
<tr>
<td>Flugasche CA528 mit IP21-Lösung [Teil 6]</td>
<td></td>
</tr>
<tr>
<td>Tab. 6.7</td>
<td>Experimentelle Ergebnisse der Batch-Versuche mit unterschiedlichen Feststoff-Lösungsverhältnissen (s/f) zur Reaktion der Flugasche CA528 mit IP21-Lösung [Teil 1] ... 49</td>
</tr>
<tr>
<td>Tab. 6.8</td>
<td>Experimentelle Ergebnisse der Batch-Versuche mit unterschiedlichen Feststoff-Lösungsverhältnissen (s/f) zur Reaktion der Flugasche CA528 mit IP21-Lösung [Teil 2] ... 50</td>
</tr>
<tr>
<td>Tab. 6.9</td>
<td>Umrechnung der Abfallzusammensetzung der Flugasche CA528 in hypothetische (vermutete) Mineralanteile ... 57</td>
</tr>
<tr>
<td>Tab. 6.10</td>
<td>Elementspezifische Verfügbarkeiten der Schwermetalle Pb, Zn und Cd, abgeleitet aus der Anpassung der geochemischen Modellierung an die Batch-Versuche des Abfalls CA528 mit IP21-Lösung 67</td>
</tr>
<tr>
<td>Tab. 6.11</td>
<td>Experimentelle Ergebnisse des LISA-Versuchs zur Reaktion der Flugasche CA539 mit IP21-Lösung [Teil 1] ... 69</td>
</tr>
<tr>
<td>Tab. 6.12</td>
<td>Experimentelle Ergebnisse des LISA-Versuchs zur Reaktion der Flugasche CA539 mit IP21-Lösung [Teil 2] ... 69</td>
</tr>
<tr>
<td>Tab. 6.13</td>
<td>Experimentelle Ergebnisse des LISA-Versuchs zur Reaktion der Flugasche CA539 mit IP21-Lösung [Teil 3] ... 70</td>
</tr>
<tr>
<td>Tab. 6.14</td>
<td>Experimentelle Ergebnisse des LISA-Versuchs zur Reaktion der Flugasche CA539 mit IP21-Lösung [Teil 4] ... 70</td>
</tr>
<tr>
<td>Tab. 6.15</td>
<td>Experimentelle Ergebnisse des LISA-Versuchs zur Reaktion der Flugasche CA539 mit IP21-Lösung [Teil 5] ... 71</td>
</tr>
<tr>
<td>Tab. 6.16</td>
<td>Experimentelle Ergebnisse des LISA-Versuchs zur Reaktion der Flugasche CA539 mit IP21-Lösung [Teil 6] ... 71</td>
</tr>
<tr>
<td>Tab. 6.17</td>
<td>Experimentelle Ergebnisse der Batch-Versuche mit unterschiedlichen Feststoff-Lösungsverhältnissen (s/f) zur Reaktion der Flugasche CA539 mit IP21-Lösung [Teil 1] ... 78</td>
</tr>
<tr>
<td>Tab. 6.18</td>
<td>Experimentelle Ergebnisse der Batch-Versuche mit unterschiedlichen Feststoff-Lösungsverhältnissen (s/f) zur Reaktion der Flugasche CA539 mit IP21-Lösung [Teil 2] ... 79</td>
</tr>
<tr>
<td>Tab. 6.19</td>
<td>Umrechnung der Abfallzusammensetzung des Filterstaubs CA539 in hypothetische (vermutete) Mineralanteile ... 85</td>
</tr>
</tbody>
</table>
Tab. 6.20 Elementspezifische Verfügbarkeiten der Schwermetalle Pb, Zn und Cd, abgeleitet aus der Anpassung der geochemischen Modellierung an die Batch-Versuche des Abfalls CA539 mit IP21-Lösung..... 93

Tab. 6.21 Experimentelle Ergebnisse des LISA-Versuchs zur Reaktion der Flugasche CA606 mit IP21-Lösung [Teil 1] .. 94

Tab. 6.22 Experimentelle Ergebnisse des LISA-Versuchs zur Reaktion der Flugasche CA606 mit IP21-Lösung [Teil 2] ... 95

Tab. 6.23 Experimentelle Ergebnisse des LISA-Versuchs zur Reaktion der Flugasche CA606 mit IP21-Lösung [Teil 3] ... 95

Tab. 6.24 Experimentelle Ergebnisse des LISA-Versuchs zur Reaktion der Flugasche CA606 mit IP21-Lösung [Teil 4] ... 96

Tab. 6.25 Experimentelle Ergebnisse des LISA-Versuchs zur Reaktion der Flugasche CA606 mit IP21-Lösung [Teil 5] ... 96

Tab. 6.26 Experimentelle Ergebnisse des LISA-Versuchs zur Reaktion der Flugasche CA606 mit IP21-Lösung [Teil 6] ... 97

Tab. 6.27 Experimentelle Ergebnisse der Batch-Versuche mit unterschiedlichen Feststoff-Lösungsverhältnissen (s/f) zur Reaktion der Flugasche CA606 mit IP21-Lösung [Teil 1] .. 104

Tab. 6.28 Experimentelle Ergebnisse der Batch-Versuche mit unterschiedlichen Feststoff-Lösungsverhältnissen (s/f) zur Reaktion der Flugasche CA606 mit IP21-Lösung [Teil 2] .. 105

Tab. 6.29 Umrechnung der Abfallzusammensetzung des Filterstaubs CA606 in hypothetische (vermutete) Mineralanteile ... 111

Tab. 6.30 Elementspezifische Verfügbarkeiten der Schwermetalle Pb, Zn und Cd, abgeleitet aus der Anpassung der geochemischen Modellierung an die Batch-Versuche des Abfalls CA606 mit IP21-Lösung... 119

Tab. 6.31 Experimentelle Ergebnisse des LISA-Versuchs zur Reaktion der Schlacke CA608 mit IP21-Lösung [Teil 1] ... 121

Tab. 6.32 Experimentelle Ergebnisse des LISA-Versuchs zur Reaktion der Schlacke CA608 mit IP21-Lösung [Teil 2] ... 121

Tab. 6.33 Experimentelle Ergebnisse des LISA-Versuchs zur Reaktion der Schlacke CA608 mit IP21-Lösung [Teil 3] ... 122
Tab. 6.34 Experimentelle Ergebnisse des LISA-Versuchs zur Reaktion der Schlacke CA608 mit IP21-Lösung [Teil 4] ... 122
Tab. 6.35 Experimentelle Ergebnisse des LISA-Versuchs zur Reaktion der Schlacke CA608 mit IP21-Lösung [Teil 5] ... 123
Tab. 6.36 Experimentelle Ergebnisse des LISA-Versuchs zur Reaktion der Schlacke CA608 mit IP21-Lösung [Teil 6] ... 123
Tab. 6.37 Experimentelle Ergebnisse der Batch-Versuche mit unterschiedlichen Feststoff-Lösungsverhältnissen (s/f) zur Reaktion der Schlacke CA608 mit IP21-Lösung [Teil 1] ... 129
Tab. 6.38 Experimentelle Ergebnisse der Batch-Versuche mit unterschiedlichen Feststoff-Lösungsverhältnissen (s/f) zur Reaktion der Schlacke CA608 mit IP21-Lösung [Teil 2] ... 130
Tab. 6.39 Umrechnung der Abfallzusammensetzung des Filterstaubs CA606 in hypothetische (vermutete) Mineralanteile .. 136
Tab. 6.40 Elementspezifische Verfügbarkeiten der Schwermetalle Pb, Zn und Cd, abgeleitet aus der Anpassung der geochemischen Modellierung an die Batch-Versuche des Abfalls CA606 mit IP21-Lösung... 144
Tab. 6.41 Vergleich der Schwermetallgehalte bei manipuliertem pH-Wert 146
Tab. 6.42 Relative Reduktion der Schwermetallgehalte durch Zugabe von NaOH, bezogen auf das Eluat des reinen Abfalls CA528 146
Tab. 6.43 Schwermetallgehalte der Lösungen CA528/CA400 mit IP 21 in Abhängigkeit vom Mischungsverhältnis nach 28 Tagen Reaktionszeit ... 148
Tab. 6.44 Relative Reduktion der Schwermetallgehalte durch Zugabe von CA400, bezogen auf das Eluat des reinen Abfalls CA528 149
Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>BFA</td>
<td>Braunkohlenfilterasche</td>
</tr>
<tr>
<td>c</td>
<td>Konzentration</td>
</tr>
<tr>
<td>DI</td>
<td>deionisiert</td>
</tr>
<tr>
<td>EQ3/6</td>
<td>Programmpaket für geochemische Modellrechnungen</td>
</tr>
<tr>
<td>FLV oder s/f</td>
<td>Feststoff-Lösungsverhältnis</td>
</tr>
<tr>
<td>G</td>
<td>Gibbs’sche Energie</td>
</tr>
<tr>
<td>GC</td>
<td>Gaschromatograph</td>
</tr>
<tr>
<td>GV</td>
<td>Glühverlust</td>
</tr>
<tr>
<td>ICP-MS</td>
<td>Massenspektrometer mit Plasmaanregung</td>
</tr>
<tr>
<td>ICP-OES</td>
<td>optisches Emissionsspektrometer mit Plasmaanregung</td>
</tr>
<tr>
<td>JCPDS (ICDD)</td>
<td>International Centre for Diffraction Data</td>
</tr>
<tr>
<td>K_{sp}</td>
<td>Löslichkeitskonstante</td>
</tr>
<tr>
<td>L oder l</td>
<td>Länge; Liter</td>
</tr>
<tr>
<td>M</td>
<td>Masse</td>
</tr>
<tr>
<td>n</td>
<td>Stoffmenge</td>
</tr>
<tr>
<td>n. a.</td>
<td>nicht analysiert</td>
</tr>
<tr>
<td>n. b.</td>
<td>nicht bestimmbar, unterhalb der Bestimmungsgrenze</td>
</tr>
<tr>
<td>p</td>
<td>Druck</td>
</tr>
<tr>
<td>R</td>
<td>Allgemeine Gaskonstante</td>
</tr>
<tr>
<td>RDA</td>
<td>Röntgendiffraktometrische Analyse</td>
</tr>
<tr>
<td>SR</td>
<td>Special reactant</td>
</tr>
<tr>
<td>T</td>
<td>Temperatur</td>
</tr>
<tr>
<td>t</td>
<td>Zeit</td>
</tr>
<tr>
<td>TIC</td>
<td>total inorganic carbon</td>
</tr>
<tr>
<td>TOC</td>
<td>total organic carbon</td>
</tr>
<tr>
<td>z_i</td>
<td>Reaktionsfortschritt bei der Modellierung mit EQ3/6</td>
</tr>
<tr>
<td>ρ</td>
<td>Dichte</td>
</tr>
<tr>
<td>μ</td>
<td>chemisches Potential</td>
</tr>
<tr>
<td>$\beta^0, \beta^1, \beta^2, C^4, \Theta, \xi, \lambda$ und Ψ</td>
<td>Pitzerkoeffizienten</td>
</tr>
<tr>
<td>Name</td>
<td>Abkürzung</td>
</tr>
<tr>
<td>---------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Anhydrit</td>
<td>a</td>
</tr>
<tr>
<td>Aphthitalit</td>
<td>gs</td>
</tr>
<tr>
<td>Bischofit</td>
<td>bi</td>
</tr>
<tr>
<td>Brucit</td>
<td></td>
</tr>
<tr>
<td>Carnallit</td>
<td>c</td>
</tr>
<tr>
<td>C-S-H (0,8)</td>
<td></td>
</tr>
<tr>
<td>C-S-H (1,1)</td>
<td></td>
</tr>
<tr>
<td>Ettringit</td>
<td>et</td>
</tr>
<tr>
<td>Gehlenit</td>
<td>ge</td>
</tr>
<tr>
<td>Gibbsit</td>
<td>g</td>
</tr>
<tr>
<td>Gips</td>
<td></td>
</tr>
<tr>
<td>Gismondin</td>
<td>gm</td>
</tr>
<tr>
<td>Glauberit</td>
<td></td>
</tr>
<tr>
<td>Halit</td>
<td>n</td>
</tr>
<tr>
<td>Kainit</td>
<td>k</td>
</tr>
<tr>
<td>Kieserit</td>
<td>ks</td>
</tr>
<tr>
<td>Mg-Oxichlorid</td>
<td></td>
</tr>
<tr>
<td>Polyhalit</td>
<td>p</td>
</tr>
<tr>
<td>Portlandit</td>
<td></td>
</tr>
<tr>
<td>Quarz</td>
<td>Q</td>
</tr>
<tr>
<td>SiO₂ (Amorph)</td>
<td>Siₐm</td>
</tr>
<tr>
<td>Sylvin</td>
<td>sy</td>
</tr>
<tr>
<td>Syngenit</td>
<td>sg</td>
</tr>
<tr>
<td>Talc</td>
<td></td>
</tr>
<tr>
<td>Thenardit</td>
<td>t</td>
</tr>
<tr>
<td>Trichlorid</td>
<td></td>
</tr>
</tbody>
</table>

2) Schreibweise für Zementphasen: A = Al₂O₃, C = CaO, M = MgO, S = SiO₂, Cs = CaSO₄, Cc = CaCl₂, H = H₂O