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SI-Model

Susceptible-Infectious Model: applicable to HIV.

S ----------------> I
         rβI/N

dS/dt = − rβ (I / N) S
dI/dt  =    rβ (I / N) S

S: Susceptible humans 
I: Infectious humans 
r: Number of contacts per unit time
β: Probability of disease transmission per contact
N: Total populationsize: N = S + I.

with solution for I(0) = I0. 

                         N                                        1
I(t) =  I0 -------------------------- =  N -------------------------
             (N − I0) exp[−rβt ] + I0        1 + (N/I0 - 1) exp[−rβt ] 

for I0 << N and with i = I / N

                         N                                          1
I(t) =  I0 ----------------------- == >  i(t) = ---------------------
                 N exp[−rβt ] + I0                  1 + N/I0 exp[−rβt ]

for t < 1/(rβ)

                 N                     
I(t) =  I0 -------------- = I0 exp[rβt ]   ==> i(t) = i0 exp[rβt ] 
              N exp[−rβt ]

SI-Model

                                                           ln2
rβ = 0.608 years-1  ------> Tsi =  --------- =  1.15 years
                                                            rβ

          ln2
rβ =  ------
         Tsi 

SIS Model
Susceptible-Infectious-Susceptible Model: applicable to the common cold.

  <----- γ --------
     S                               I
            ----------------->

         rβI/N

S: Susceptible humans 
I: Infectious humans 
r: Number of contacts per unit time
β: Probability of disease transmission per contact
γ:      Per-capita recovery rate (1/γ = duration of infection)
N:      Total populationsize: N = S + I.

dS/dt = − rβ (I / N) S + γ I
dI/dt  =    rβ (I / N) S  - γ I

                               N ((rβ−γ)/rβ)
I(t) =  I0 -------------------------------------------------
                  (N ((rβ−γ)/rβ) − I0) exp[−(rβ-γ)t ] + I0 

vgl. SI-Model

                         N 
I(t) =  I0 --------------------------
             (N − I0) exp[−rβt ] + I0

                                                          ln2
(rβ−γ) = 0.4 days-1 ----> Tsis = ------------- = 1.75 days
                                                         rβ−γ

(rβ−γ)/rβ = 0.8                                

SIR Model
Susceptible-Infectious-Recovered Model: applicable to measles, mumps, rubella

     S   ----- rβI/N---->  I  ----- γ -------->  R
                   

        

S = Susceptible humans 
I = Infectious humans 
R =    Recovered humans
r = Number of contacts that one human has / time                                                                                                                                                                            
β = Probability of disease transmission per contact that one human has                            

γ =    Per-capita recovery rate (1/γ = duration of infection)
N = Total population size: N = S(t) + I(t) + R(t) = constant over time.

rβ =            one human's probability of disease transmission per time
i / N =         probability of meeting one infective in the population
rβ (I / N) = average number of significant contacts with infectives that one susceptible has per time

standard incidence
dS/dt  = − rβ (I / N) S                                                                                     
dI/dt   =    rβ (I / N) S  - γ I                                                                              
dR/dt =    γ I 
R(t)   =    N - ( S(t) + I(t) )  

                                                                                                 

     
     s   ----- β i ---->  i  ----- γ -------->  r
                   

        

s = S/N = Susceptible humans / total population (susceptible fraction) 
i = I/N  = Infectious humans / total population (infectious fraction)
r =     R/N = Recovered humans / total population (recovered fraction)
r = -------------------------------------------------------------------------------|  ---> if β contains r, then  
                                                                                                                   |  ---> β =  one human's probability of 
diseaase 
                                                                                                                                    transmission per time =  
                                                                                                                   |  ---> β =  significant contact rate of one 
human
β: -------------------------------------------------------------------------------|
γ:       Per-capita recovery rate (1/γ = duration of infection)
N: Total population size: N = S + I + R  --->  1 =  s + i + r

β =                     one human's probability of disease transmission per time
i / N =                 probability of meeting one infective in the population
β (I / N) = β i  = average number of significant contacts with infectives that one susceptible has per time

standard incidence (eq. 2.2)
ds/dt = - β i s               dS/dt = -  β ( I / N ) S. When mass action law is assumed: dS/dt = - eta N (I / N) S
di/dt =    β i s - γ i
dr/dt =   γ i
r(t)   =   1 - ( s(t) + i(t) )

Ro =  Characteristic of the infectant = (Number of contacts / time) * (Probability of transmission / contact) * (Duration of infection)
Ro =  r β / γ

⁃ The basic reproductive (or reproduction) number, R0, is the number of secondary infections that one infected person would produce in a fully susceptible population through the entire duration of his infectious period. 
⁃ R0 provides a threshold condition for the stability of the disease-free equilibrium point (for most models):

⁃ The disease-free equilibrium point is locally asymptotically stable when R0 < 1: the disease dies out.
⁃ The disease-free equilibrium point is unstable when R0 > 1: the disease establishes itself in the population or an epidemic occurs.
⁃ For a given model, R0 is fixed over all time. This definition is only valid for simple homogeneous autonomous models.

⁃ Can define similar threshold conditions for more complicated models that include heterogeneity and/or seasonality but the basic definition no longer holds.
⁃ The (effective) reproductive number, Re, is the number of secondary infections that one infected person would produce through the entire duration of his infectious period.
⁃ Typically, but not always, Re is the product of R0 and the proportion of the population that is susceptible.

Re(t) = R0 × S(t) / N (t)
         = r β / γ  S(t) / N(t)

⁃ The control reproductive number, Re, describes whether the infectious population increases or not. 
⁃ It increases when Re > 1; 
⁃ it decreases when Re < 1 and 



⁃ it is constant when Re = 1. 
⁃ When Re = 1, the disease is at equilibrium.

⁃ Re can change over time.
⁃ Rc is the number of secondary infections that one infected person would produce through the entire duration of the infectious period, in the presence of control interventions.

⁃ If R0 < 1, introduced cases do not lead to an epidemic (the number of infectious individuals decreases towards 0). 
⁃ If R0 > 1, introduced cases can lead to an epidemic (temporary increase in the number of infectious individuals).

vertical infection: | infection stemming from mother
                          V

horizontal infection: --> infection between MSEIR compartments

         passive immune                    Susceptible                             Exposed                            Infective                                Recovered
                                             |                                                                                     |             infectious                  |
                                             |                                                                                     |                                              |
               1/delta; period of passive immunity                                    1/epsilon: latent period        1/gamma: infectious period (waiting time)

measles:                  6 - 9 months                                                                      1 - 2 weeks                              1 week

Ro = 
⁃ basic 

⁃ reproduction number or 
⁃ reproduction ratio or
⁃ reproductive rate

⁃ average number of secondary infections that occur when one infective is introduced into a completely susceptible host population 

R = replacement number = average number of secondary infections produced by a typical infective during his [infectious period i.e. ] entire period of infectiousness
⁃ R(t) = sigma s(t)
⁃ R(t) < = Ro because, after the infection has invaded a population, not everyone is susceptible any longer

sigma = β / γ = contact number = average number of adequate contacts of a typical infective during his infectious period = contact rate (β) * average infectious period (1/ γ)
⁃ sigma = Ro in most models, i.e. constant in time

At the beginning t = o of the spread of an infectious disease, the entire population (except the invader) is susceptible: s(t=0) = so = 1
⁃ with R = sigma s(t) (Definition von sigma)
⁃ @ t = 0, R = sigma = Ro

. 
.

                                    |------------------|
                                              |                           |
                                              |                           |
                                             sinf              smax = 1/sigma 
                                                              Durchseuchung ?
                                                                          |
                                                                          |
               bei s(t) < 1/sigma                                |
               nimmt i(t) (mit fallendem s(t)) bei       |
               fortschreitender Zeit t ab                    |
                                                                          |    bei s(t) > 1/sigma 
                                                                          |    nimmt i(t) (mit fallendem s(t)) bei 
                                                                          |   fortschreitender Zeit t zu

Fig. 2: The epidemic dies out because, when the susceptible fraction s(t) goes below l/sigma, the 
replacement number R = sigma s(t) goes below 1. Observe that the threshold result here involves 
the initial replacement number R = sigma s, and does not involve the basic reproduction number Ro.

The solution paths are found from the quotient differential equation di/ds = -1 + l/(sigma s)
i(t) + s(t) - ln[s(t) ] / sigma = io + so - ln[so] / sigma
If 
⁃ sigma so < 1, then i(t) decreases to zero as t --> t oo.
⁃ sigma so > 1, then

⁃ i(t) 
⁃ first increases up to a maximum value 

⁃ imax = io + so - 1/sigma (1 + ln(sigma so)  and 
⁃ then decreases to zero as t -+ oo. 

⁃ s(t) 
⁃ is a decreasing function and 
⁃ the limiting value sinf is the unique root in (0, l/sigma) of the equation

⁃ io + so -  sinf + ln[ sinf/ so] / sigma = 0   (eq. 2.4) 

Using (eq. 2.4) we can calculate the approximate contact number sigma for a specific disease with known 
⁃ so and sinf and  
⁃ io beng infiniteley small:

                 ln[so / sinf]         ln[so] - ln[sinf]
sigma =  ----------------- = ---------------------
                   so - sinf                 so - sinf

β =  sigma γ = 1 day-1

sigma = 3.0, 2.5, 1.5, 1.1, 1.0 
Source:  COVID-19/Mathematicae/seir-paths_results.ma

sigma = 4.0 (beta = 1.0, gammaG = 0.25)
s, i, r                                     

 
R[t]

 

sigma = 2.5 (beta = 0.625, gammaG = 0.25)

s, i, r

R[t]

sigma = 1.3 (beta = 0.325, gammaG = 0.25)
s, i, r

R[t]

phase space



                                    |------------------|
                                              |                           |
                                              |                           |
                                             sinf              smax = 1/sigma 
                                                              Durchseuchung ?
                                                                          |
                                                                          |
               bei s(t) < 1/sigma                                |
               nimmt i(t) (mit fallendem s(t)) bei       |
               fortschreitender Zeit t ab                    |
                                                                          |    bei s(t) > 1/sigma 
                                                                          |    nimmt i(t) (mit fallendem s(t)) bei 
                                                                          |   fortschreitender Zeit t zu

Fig. 2: The epidemic dies out because, when the susceptible fraction s(t) goes below l/sigma, the 
replacement number R = sigma s(t) goes below 1. Observe that the threshold result here involves 
the initial replacement number R = sigma s, and does not involve the basic reproduction number Ro.

The solution paths are found from the quotient differential equation di/ds = -1 + l/(sigma s)
i(t) + s(t) - ln[s(t) ] / sigma = io + so - ln[so] / sigma
If 
⁃ sigma so < 1, then i(t) decreases to zero as t --> t oo.
⁃ sigma so > 1, then

⁃ i(t) 
⁃ first increases up to a maximum value 

⁃ imax = io + so - 1/sigma (1 + ln(sigma so)  and 
⁃ then decreases to zero as t -+ oo. 

⁃ s(t) 
⁃ is a decreasing function and 
⁃ the limiting value sinf is the unique root in (0, l/sigma) of the equation

⁃ io + so -  sinf + ln[ sinf/ so] / sigma = 0   (eq. 2.4) 

Using (eq. 2.4) we can calculate the approximate contact number sigma for a specific disease with known 
⁃ so and sinf and  
⁃ io beng infiniteley small:

                 ln[so / sinf]         ln[so] - ln[sinf]
sigma =  ----------------- = ---------------------
                   so - sinf                 so - sinf

β =  sigma γ = 1 day-1

sigma = 3.0, 2.5, 1.5, 1.1, 1.0 
Source:  COVID-19/Mathematicae/seir-paths_results.ma

sigma = 4.0 (beta = 1.0, gammaG = 0.25)
s, i, r                                     

 
R[t]

 

sigma = 2.5 (beta = 0.625, gammaG = 0.25)

s, i, r

R[t]

sigma = 1.3 (beta = 0.325, gammaG = 0.25)
s, i, r

R[t]

phase space



                                    |------------------|
                                              |                           |
                                              |                           |
                                             sinf              smax = 1/sigma 
                                                              Durchseuchung ?
                                                                          |
                                                                          |
               bei s(t) < 1/sigma                                |
               nimmt i(t) (mit fallendem s(t)) bei       |
               fortschreitender Zeit t ab                    |
                                                                          |    bei s(t) > 1/sigma 
                                                                          |    nimmt i(t) (mit fallendem s(t)) bei 
                                                                          |   fortschreitender Zeit t zu

Fig. 2: The epidemic dies out because, when the susceptible fraction s(t) goes below l/sigma, the 
replacement number R = sigma s(t) goes below 1. Observe that the threshold result here involves 
the initial replacement number R = sigma s, and does not involve the basic reproduction number Ro.

The solution paths are found from the quotient differential equation di/ds = -1 + l/(sigma s)
i(t) + s(t) - ln[s(t) ] / sigma = io + so - ln[so] / sigma
If 
⁃ sigma so < 1, then i(t) decreases to zero as t --> t oo.
⁃ sigma so > 1, then

⁃ i(t) 
⁃ first increases up to a maximum value 

⁃ imax = io + so - 1/sigma (1 + ln(sigma so)  and 
⁃ then decreases to zero as t -+ oo. 

⁃ s(t) 
⁃ is a decreasing function and 
⁃ the limiting value sinf is the unique root in (0, l/sigma) of the equation

⁃ io + so -  sinf + ln[ sinf/ so] / sigma = 0   (eq. 2.4) 

Using (eq. 2.4) we can calculate the approximate contact number sigma for a specific disease with known 
⁃ so and sinf and  
⁃ io beng infiniteley small:

                 ln[so / sinf]         ln[so] - ln[sinf]
sigma =  ----------------- = ---------------------
                   so - sinf                 so - sinf

β =  sigma γ = 1 day-1

sigma = 3.0, 2.5, 1.5, 1.1, 1.0 
Source:  COVID-19/Mathematicae/seir-paths_results.ma

sigma = 4.0 (beta = 1.0, gammaG = 0.25)
s, i, r                                     

 
R[t]

 

sigma = 2.5 (beta = 0.625, gammaG = 0.25)

s, i, r

R[t]

sigma = 1.3 (beta = 0.325, gammaG = 0.25)
s, i, r

R[t]

phase space

SEIR Model 
by Gabriela Gomes et al. 21 May 2020

https://www.medrxiv.org/content/10.1101/2020.04.27.20081893v3.full.pdf
https://www.medrxiv.org/content/10.1101/2020.04.27.20081893v3.supplementary-material

Individual variation in susceptibility or exposure to SARS-CoV-2 lowers the herd immunity threshold
 medRxiv, 21 May 2020

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7239079/
https://www.medrxiv.org/content/10.1101/2020.04.27.20081893v3.full.pdf

     |                                         |                                      
   x lambda               E(x)            delta                I(x)            gamma

dS(x) / dt = - lambda x S(x)
dE(x) / dt =   lambda x S(x) - delta E(x)
dI(x) / dt =     delta E(x) -        gamma I(x)

⁃ x = susceptibility of individuals S(x) and I(x)
⁃ <x> = mean susceptibility factor at epidemic onset. 
⁃ lambda = 

⁃ is the average force of infection upon susceptible individuals in a population of size 
⁃ rho is a factor measuring the infectivity of individuals in compartment E in relation to those in I

⁃ q(x): prior to the epidemic, susceptibility is described by a probability density function q(x) with 
⁃ mean q(x) = 1 and 
⁃ CV = 〈(x − 1)2〉 explored as a parameter. 

⁃
⁃ Reff(t) (effective reproduction number, also denoted by Re or Rt) is a time-dependent quantity obtained by multiplying Ro by the susceptibility of the population over time.

Abstract: 
Abstract: As severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spreads, the susceptible subpopulation is depleted causing the incidence of new cases to decline. Variation in individual susceptibility or exposure 
to infection exacerbates this effect. Individuals that are more susceptible or more exposed tend to be infected earlier, depleting the susceptible subpopulation of those who are at higher risk of infection. This selective depletion 

of susceptibles intensifies the deceleration in incidence. Eventually, susceptible numbers become low enough to prevent epidemic growth or, in other words, the herd immunity threshold (HIT) is reached. 
Although estimates vary, simple calculations suggest that herd immunity to SARS- CoV-2 requires 60-70% of the population to be immune.

 By fitting epidemiological models that allow for heterogeneity to SARS-CoV-2 outbreaks across the globe, we show that variation in susceptibility or exposure to infection reduces these estimates. 
Accurate measurements of heterogeneity are therefore of paramount importance in controlling the COVID-19 pandemic.  

We integrate continuous distributions of susceptibility or connectivity in otherwise basic epidemic models for COVID-19 and show that as the coefficient of variation (CV) increases from 0 to 4, the herd immunity threshold declines 
from over 60% to less than 10%. 

     |                                         |                                      
   x lambda               E(x)            delta                I(x)            gamma

                                                                                                                                         β
S: Susceptible individuals (S) become exposed (E) at a rate dependent on 
⁃ their susceptibility x, 
⁃ the number of potentially infectious contacts β/N they engage in, and 
⁃ the total number of infectious people in the population (Integral([rho E(x) + I(x)] dx) per time unit. 

E: Upon exposure, individuals (E) enter an asymptomatic incubation phase, during which they slowly become infectious. 
⁃ Thus, infectivity of exposed individuals is made to be 1/2 of that of infectious ones (rho = 0.5). 

I: After a few days, individuals develop symptoms – on average, 4 days after the exposure to the virus (delta = 1/4 per day) – and become fully infectious. 
R: They recover, i.e., they lose their infectiousness 4 days after that on average (gamma = 1/4 per day).

We have assumed that no reinfection can occur after recovery, which means absolute long-lasting immunity.

Once containment measures are put in place in each country, 
⁃ we postulate it takes 14 days until the maximum effectiveness of social distancing measures is reached. 
⁃ In the simulations presented throughout we have held this condition (maximum “lockdown” efficacy) for 30 days, 
⁃ after which period, social distancing measured are progressively relaxed, slowly returning to its original value (normality) after 1-year. 
⁃ Both the implementation and relaxing of the social distancing measures are imposed to be linear in this model. 

We would need to estimate 
⁃ when local transmission started to occur (to), and 
⁃ the pace at which individuals infected each other in the very early stages of the epidemic (Ro). 

To fully understand the interplay between herd immunity and the impact of NP interventions, we then set out to estimate 
⁃ the time at which social distancing measures started to have an impact on daily incidence (to

d), and 
⁃ what is their maximum effectiveness (d), for each country.

Two simplifying assumptions: 
I. the fraction of infectious individuals reported as COVID-19 cases (reporting fraction) is 10%; 
II. local transmission starts (to) when countries report 

⁃ 1 case per 30 106 population in one day 
⁃ i.e. when there are 10 infections per 30 106 population in one day

dS(x)
dt  = - x βN  [ρ E(x) + I(x)] dx

?

?

 S(x) = - x λ S(x)
 ........................... (susceptibles)

dE(x)
dt  = - x λ S(x) - δ E(x) ........................................................................ (infected normally called "exposed" who originally had susceptibility x) ........  (eq. 1)

dI(x)
dt  = δ E(x) - γ I(x) .................................................................................. (infectives who originally had susceptibility x, i.e. with susceptibility x?)

dR(x)
dt  = γ I(x) .............................................................................................  (recovereds)

notation
⁃ S(x) = number of individuals with susceptibility x
⁃ E(x) = number of individuals ("exposeds") who originally 

⁃ had susceptibility x, 
⁃ became exposed & infected but 
⁃ are neither symptomatic nor infectious 

⁃ I(x)  = number of individuals who originally had susceptibility x and became infectious
⁃ x = susceptibility 

⁃ <x> = mean susceptibility factor at epidemic onset. 
⁃ lambda =  

⁃ is the average force of infection upon susceptible individuals in a population of size N,
⁃ corresponds to β / N I in homogeneous SIR model above.

⁃ rho is a factor measuring the infectivity of individuals in compartment E in relation to those in I ....................................................(rho = 0.5)
⁃  = basic reproduction number ................................................................................................................................... (eq. 2)
⁃ 1/delta = latency period .................................................................................................................................................................................(4 days)
⁃ 1/gamma = average recovery time ..............................................................................................................................................................(4 days)
⁃ q(x): prior to the epidemic (@ t = to), susceptibility x(to) is described by a probability density function q(x) with 

⁃ mean q(x) = 1 and 

https://www.medrxiv.org/content/10.1101/2020.04.27.20081893v3.full.pdf
https://www.medrxiv.org/content/10.1101/2020.04.27.20081893v3.supplementary-material
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7239079/
https://www.medrxiv.org/content/10.1101/2020.04.27.20081893v3.full.pdf


⁃ CV = 〈(x − 1)2〉 explored as a parameter. 
⁃ x = connectivity = exposure to infection (dependent on social distancing) of individuals S(x) and I(x)

⁃ connectivity: variation in exposure to infection is primarily governed by patterns of connectivity among individuals. We incorporate this in the system (eq. 1) by adding variation in infectivity and assuming a 
positive correlation between susceptibility and infectivity

⁃
⁃  ............................................................................................................................................................................. (eq. 3) 

⁃ where <x> and <x2> are the first and second moments of the distribution q(x) prior to the epidemic

⁃ Reff(t) (also called Re or Rt) =  x(t) Ro (i.e. Ro multiplied by the susceptibility of the population over time, i.e. Ro S(t)/N = sigma s(t) ?)
⁃ [when Reff(t) = Ro (i.e. x(t) = 1) the model is called homogeneous ?]

⁃ Once containment measures are put in place in each country, 
⁃ we postulate it takes 14 days until the maximum effectiveness of social distancing measures is reached. 
⁃ In the simulations presented throughout we have held this condition (maximum “lockdown” efficacy) for 30 days, after which period, social distancing measures are progressively relaxed, 

slowly returning to its original value (normality) after 1 year. 
⁃ Both the implementation and relaxing of the social distancing measures are imposed to be linear in this model.

⁃ to               =  estimate of the start of local disease transmission = time when 1 reported case per  (3 106people day)
⁃ to

d             = estimate of the time at which social distancing measures started to have an impact on daily incidence
⁃ d                = maximum effectiveness of social distancing measures for each country
⁃ y(k, theta) = simulated COVID-19 cases at day k after to
⁃ theta          =  set of parameters Ro, to

d , d 
⁃ n                 =  91 = total number of days included in the analysis (day 91 = 30 April)

⁃ 1 = 1 February
⁃ 29 = 29 February
⁃ 30 = 1 March
⁃ 46 = 17 March
⁃ 48 = 19 March
⁃ 60 = 30 March, 62 = 1 April
⁃ 80 = 19 April

Probability Density Function of the gamma distribution ("Gamma Distribution")

q(x) = 
(x - µ
β

)γ - 1exp(- x - µ
β

)

β Γ(γ)  for x >= µ and γ, β > 0

with
⁃ gamma being the shape, 
⁃ mu the location, 
⁃ beta the scale parameter, 
⁃ the gamma function

Γ(γ) = tγ-1 e-t dt
0

Infinity

⁃ the coefficient of variation
CV = 1

γ

 
Fig. J1: q[x] = probability density function of the gamma distribution. Abscissa = x, ordinate = q(x), mu = 1, beta = 1, 

• gamma = 
⁃ 0.111 (CV = 3)
⁃ 1 (CV = 1) 
⁃ 2.111 (CV = 0.7)

Gamma distributions with 
• mu = 0, beta = 1 (standard distribution), 

⁃ gamma = 0.1, 1.1, 2.1 (corresponding to CV = 3.2, 1, 0.7)

Germany

Ro for
⁃ homogeneous model (5 percentile, median, 95 percentile) ........................ CV=1:   2.662, 2.692, 2.722,         CV=3:   2.663, 2.692, 2.723
⁃ heterogeneous susceptibility model  ................................................................ CV=1:   2.664, 2.694, 2.725,         CV=3:   2.671, 2.700, 2.735

https://www.itl.nist.gov/div898/handbook/eda/section3/eda366b.htm


⁃ heterogeneous contacts model  ........................................................................ CV=1:   2.781, 2.816, 2.847,         CV=3:   3.045, 3.089, 3.129



connectivity = exposure
0.01% = 0.8 106, 0.12 % = 9.6 106



Result
Individual variation in susceptibility or exposure (connectivity) accelerates the acquisition of immunity in populations due to selection by the force of infection. More susceptible and more connected individuals have a higher 
propensity to be infected and thus are likely to become immune earlier. Due to this selective immunization, heterogeneous populations require less infections to cross their herd immunity thresholds (HITs) than homogeneous 
(or not sufficiently heterogeneous) models would suggest.



Gamma distribution

Gamma distributions with 
• mu = 0, beta = 1 (standard distribution), 

⁃ gamma = 0.1, 1.1, 2.1 (corresponding to 
 
CV = 1

γ 
=  3.2, 1, 0.7, CV being independent from mu and beta)

Log-normal distribution

m = 1, 1 <= CV <= 4                                          
m = 2, 1 <= CV <= 4

SEIR Model 
Barbarossa MV, Fuhrmann J, Meinke JH, Krieg S, Varma HV, Castelletti N, et al. (2020) 

Modeling the spread of COVID-19 in Germany: Early assessment and possible scenarios. 
PLoS ONE 15(9): e0238559. 

18 April 2020
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0238559

Fuhrmann, J., Barbarossa, M.V. 
The significance of case detection ratios for predictions on the outcome of an epidemic - a message from mathematical modelers. 

Arch Public Health 78, 63 (2020). 
4 May 2020

https://doi.org/10.1186/s13690-020-00445-8
https://archpublichealth.biomedcentral.com/articles/10.1186/s13690-020-00445-8

https://en.wikipedia.org/wiki/Log-normal_distribution
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0238559
https://doi.org/10.1186/s13690-020-00445-8
https://archpublichealth.biomedcentral.com/articles/10.1186/s13690-020-00445-8


                                                         |                                         |                                            

                                       symptomatic not yet detected infectives

S ---lambda---> E --- (1 - etao) rhoo gammaE ---->I --- (1 - eta1) gammaI  ----------- T     symptomatic undetected

                              |                                       |                                         v
                              |                                eta1 gammaI                                                          R
                              |                                       V                                        ^
                             +----  etao rhoo gammaE --------> H  --- (1 - deltaH) gammaH ---------+     detected

                              |                                       ^                                         
                              |                                 eta1

1 gammaU                                                         

                              |                                        |                                         
                     +---- (1 - rhoo) gammaE --------> U  --- (1 - etat

1) gammaU --------->  RU    asymptomatic undetected

                                                                     asymptomatic undetected infectives

  
dS / dt = - lambda S                                                                                                              (susceptibles)
dE/ dt =    lambda S - gammaE E                                                                                        (exposeds, i.e. without symptoms)                                 
dU/ dt   =  (1 - rhoo) gammaE E  - gammaU U                                                                   (asymptomatic infectives)
dI/ dt   =   (1 - etao) rhoo gammaE E  - gammaI I                                                           (symptomatic infectives)
dH / dt =  etao rhoo gammaE E + etat

1 gammaU U + eta1 gammaI I - gammaH H    (diagnosed infectives (cases))
dR / dt =  (1 - eta1) gammaI I + (1 - deltaH) gammaH H                                                 (recovered from detected infectives)
dRu / dt =  (1 - etat

1) gammaU U + (1 - eta1) gammaI I                                                   (recovered from asymptomatics) 
dD / dt =  deltaH gammaH H                                                                                                  (deceaseds)

notation
⁃ S = number of susceptibles
⁃ E = number of individuals, who

⁃ became exposed & infected but 
⁃ are neither symptomatic nor infective 

⁃ U = number of asymptomatic undetected infectives
⁃ I  = number of symptomatic not yet detected infectives
⁃ H = number of reported cases (tested infectives)
⁃ N = 83 106

⁃ λ = (βI I + βU U + βH H)/(N − D)                
⁃ fitted βU mean (5 ...95 percentile) = 1.59 (1.36...1.89), (mean ln2/βU = 0.44 d)
⁃ βI = 0.8 βU (mean ln2/βI = 0.85 d)
⁃ βH = 0.1 βU (mean ln2/βH = 7 d)

⁃ 1 / gammaE = mean incubation period ----------------------------------------------> 5.5 d     (literature)
⁃ 1 / gammaI =  1 / gammaH mean duration of symptomatic infection ------------> 7 d        (literature)
⁃ 1 / gammaU = mean duration of asymptomatic infection --------------------------> 7 d        (literature)
⁃ deltaH = case mortality of undetected infectives -----------------------------------> 0.057    (literature)
⁃ rhoo = probability of developing symptoms (after 5.5 days)  ----------------------> 0.67       (literature)
⁃ etao  = probability of disease being detected during latency in symptomatics  -----------> fitted 
⁃                                                                                                                                             (1 - etao) mean  (5 ...95 percentile) = 0.23 (0.58 ... 0.92)
⁃ eta1  = probability of disease being detected while symptomatic  --------------------------> fitted

⁃ eta1
1 = probability of disease being detected while asymptomatic -------------------------> assumed

⁃ R ----------------------------------------------------------------------------------------------------> mean (5 ...95 percentile) = 6.99 (5.84...8.35)

⁃
Susceptible individuals can be infected via contacts with 
⁃ asymptomatic (transmission rate βU ), 
⁃ symptomatic undetected (βI ) and 
⁃ reported cases (βH). 

We assume that 
⁃ asymptomatic infectives do not restrict their contacts to others, and therefore have higher transmission rates than symptomatic infected individuals. 
⁃ detected (reported) cases to reduce their contacts even further. 

Due to limitations in the identifiability of the parameters with the available data, 
⁃ we fix the ratios βI / βH and  βI / βU and estimate the latter. 

NCBI SARS-CoV-2 Resources 
@

⁃ PMC
⁃ NCBI
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https://www.ncbi.nlm.nih.gov/pmc/?term=%22severe%20acute%20respiratory%20syndrome%20coronavirus%202%22%5BSupplementary%20Concept%5D%20OR%20%22severe%20acute%20respiratory%20syndrome%20coronavirus%202%22%5BAll%20Fields%5D%20OR%20%22ncov%22%5BAll%20Fields%5D%20OR%20%222019-nCoV%22%5BAll%20Fields%5D%20OR%20%22COVID-19%22%5BAll%20Fields%5D%20OR%20%22SARS-CoV-2%22%5BAll%20Fields%5D%20OR%20((coronavirus%5BAll%20Fields%5D%20OR%20%22cov%22%5BAll%20Fields%5D)%20AND%202019%2F11%5BPubDate%5D%20%3A%203000%5BPubDate%5D)
https://www.ncbi.nlm.nih.gov/pmc/?term=%22severe%20acute%20respiratory%20syndrome%20coronavirus%202%22%5BSupplementary%20Concept%5D%20OR%20%22severe%20acute%20respiratory%20syndrome%20coronavirus%202%22%5BAll%20Fields%5D%20OR%20%22ncov%22%5BAll%20Fields%5D%20OR%20%222019-nCoV%22%5BAll%20Fields%5D%20OR%20%22COVID-19%22%5BAll%20Fields%5D%20OR%20%22SARS-CoV-2%22%5BAll%20Fields%5D%20OR%20((coronavirus%5BAll%20Fields%5D%20OR%20%22cov%22%5BAll%20Fields%5D)%20AND%202019%2F11%5BPubDate%5D%20%3A%203000%5BPubDate%5D)
https://www.ncbi.nlm.nih.gov/sars-cov-2/
http://acamedia.info/sciences/J_G/medicine/covid-19/mathematical_models.pdf
http://acamedia.info/
http://acamedia.info/sciences/J_G/

