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Preface

The mathematical theory of hyperbolic systems of conservation laws and the
theory of shock waves presented in these lectures were started by Eberhardt Hopf
in 1950, followed in a series of studies by Olga Oleinik, the author, and many
others. In 1965, James Glimm introduced a number of strikingly new ideas, the
possibilities of which are explored.

In addition to the mathematical work reported here there is a great deal of
engineering lore about shock waves; much of that literature up to 1948 is reported
in Supersonic Flow and Shock Waves by Courant and Friedrichs. Subsequent work,
especially in the sixties, relies on a great deal of computation.

A series of lectures, along the lines of these notes, was delivered at a Regional
Conference held at the University of California at Los Angeles in September,
1971, arranged by the Conference Board of Mathematical Sciences, and sponsored
by the National Science Foundation. The notes themselves are based on lectures
delivered at Oregon State University in the summer of 1970, and at Stanford
University, summer of 1971. To all these institutions, my thanks, and my thanks
also to the Atomic Energy Commission, for its generous support over a number
of years of my research on hyperbolic conservation laws. I express my gratitude
to Julian Cole and Victor Barcilon, organizers of the regional conference, for
bringing together a very stimulating group of people.

New York PETER D. LAX

December 1972

ix
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Hyperbolic Systems of
Conservation Laws and the Mathematical
Theory of Shock Waves
Peter D. Lax

Introduction. It is well known that an initial value problem for a nonlinear
ordinary differential equation may very well fail to have a solution for all t ime;
the solution may blow up after a finite time. The same is true for quasi-linear
hyperbolic partial differential equations: solutions may break down after a finite
time when their first derivatives blow up.

In these notes we study first order quasi-linear hyperbolic systems which come
from conservation laws. Since a conservation law is an integral relation, it may
be satisfied by functions which are not differentiable, not even continuous. merely
measurable and bounded. We shall call these generalized solutions, in contrast to
the regular, i.e., differentiable ones. The breakdown of a regular solution may
merely mean that although a generalized solution exists for all time, it ceases to
be differentiable after a finite time. All available evidence indicates that this is
so. It turns out however that there are many generalized solutions with the same
initial data, only one of which has physical significance; the task is to give a
criterion for selecting the right one. A class of such criteria is described in these
notes; they are called entropy conditions, for in the gas dynamical case they
amount to requiring the increase of entropy of particles crossing a shock front.

These lectures deal with the mathematical side of the theory, i.e., with results
that can be proved rigorously. We present whatever is known about existence and
uniqueness of generalized solutions of the initial value problem subject to the
entropy conditions. We also investigate the subtle dissipation introduced by the
entropy condition and show that it causes a slow decay in signal strength.

As stated in the preface, no numerical results are presented; yet there is a very
brief introduction to numerical methods in § 7 of the Notes. The approximate
solutions that can be computed by these methods are not only enormously useful
quantitatively, but there is hope that such methods can also be used to prove the
existence of solutions and to study them qualitatively.

1. Quasi-linear hyperbolic equations. A first order system of quasi-linear
equations in two independent variables is of the form

l



2 PETER D. LAX

where u is a vector function of x and t, A a matrix function of u as well as of x
and t. Such a system is called strictly hyperbolic if for each x, t and u the matrix
A = A(x, f , u) has real and distinct eigenvalues i- = T^X, f, w), j — 1, • • • , n.

Similarly, a quasi-linear system in k + 1 variables x1. x2, • • • , xk, r,

is called hyperbolic if for each x, t, u and unit vector to, the matrix

has real and distinct eigenvalues T^(X, r, u, co), y = 1, • • • , n.
The initial value problem for (1.1)—or (1.2)—is to find a solution u(x, r) with

prescribed values at t — 0:

We shall deduce now easily from the linear theory that this initial value problem
has at most one solution in the class of C1 solutions. For let u and v both solve
( 1 - 1 ) :

Subtracting the two equations we find that the difference d = u — v satisfies

Assume that A is C1; then \A(u) — A(v}\ ^ const. \d\ for the quasi-linear equation
(1.1), and similarly for (1.2), It follows that d = 0.

Does the initial value problem always have a solution? We shall sketch an
argument, based on linear theory, that the answer is "yes" if the initial values are
smooth enough. The solution is obtained by iterating the '.ransformation u = -Tv
defined as follows: u is the solution of the linear initial value problem

Let us assume that the /4, are symmetric matrices. It is not hard to show, using the
energy estimates for linear symmetric hyperbolic systems and the Sobolev
inequalities, that the transformation 3~ has the following properties:

Suppose that u0 is of class Cw, where N > 1 + k/2. Define the norm \\u\\N<T by



Since B* T is closed in the || • ||0 T norm, it follows that 3~ has a unique fixed point
in B* T constructible by iteration. This fixed point solves the initial value problem
for the quasi-linear equation (1.2).

This proof shows that (1.2), (1.3) has a solution in some finite time interval
0 ^ r ^ T. Examples presented in § 3 and § 6 show that, in general, smooth
solutions do not exist beyond some finite time interval. Since solutions are supposed
to describe the state of a physical system, how is one to interpret the nonexistence
of solutions in the large? We shall show in the next section that for quasi-linear
equations which come from conservation laws there is a way of defining generalized
solutions.

2. Conservation laws. A conservation law asserts that the rate of change of the
total amount of substance contained in a fixed domain G is equal to the flux of
that substance across the boundary of G. Denoting the density of that substance
by M, and the flux by/ the conservation law is

where each /•'is some nonlinear function of ul, ••• , u". Carrying out the differentia-
tions in (2.3) we get the first order quasi-linear system

We shall deal with systems of conservation laws

Dividing by vol (G) and shrinking G to a point where all partial derivatives of u
and /are continuous we obtain the differential conservation law

here n denotes the outward normal to G and dS the surface element on cG, the
boundary of G, so that the integral on the right in (2.1) measures outflow—hence
the minus sign. Applying the divergence theorem and taking d/dt under the integral
sign we obtain

HYPERBOLIC SYSTEMS OF CONSERVATION LAWS 3

(i) For R large enough and T small enough ST maps the ball £$ r of radius R:

into itself.
(ii) J7 is a contraction of B* T with respect to the || • 0 T norm:
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Introducing the vector and matrix notation

Since the/ j are nonlinear functions of u, the matrices Ai as defined by (2.5) are
functions of u. We assume that the quasi-linear system (2.6) is strictly hyperbolic.

u is called a generalized solution of the system of conservation laws (2.3) // it
satisfies the integral form of these laws, i.e., if

holds for every smoothly bounded domain and for every time interval ( t l , t 2 ) . This
is equivalent to requiring (2.3) to hold in the sense of distribution theory.

Let S(t) be a smooth surface moving with r, u a continuously differentiable
solution of (2.3) on either side of S which is discontinuous across S; the condition
which must be satisfied at each point of S if u is a generalized solution across S is

we can write (3.1) in the form

4

we can write (2.4) in the form

Here [u] and [/] denote the difference between values of u and /respectively on
the two sides of 5; n is the normal to S and s the speed with which S propagates
in the direction n. Relation (2.8) is called the Rankine-Hugoniot jump condition;
we shall prove it for the one-dimensional case in § 3.

We leave now these formal considerations and turn to solving the initial value
problem within the class of these generalized solutions.

3. Single conservation laws. A single conservation law is an equation of the form

where/is some nonlinear function of u. Denoting
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which asserts that u is constant along trajectories x = x(t) which propagate with
speed a:

For this reason a is called the signal speed, the trajectories, satisfying (34), are
called characteristics. Note that if/is a nonlinear function of u, both signal speed
and characteristic depend on the solution u.

The constancy of u along characteristics combined with (3.4) shows that the
characteristics propagate with constant speed; so they are straight lines. This
leads to the following geometric solution of the initial value problem u(x, 0) = u0(x):
Draw straight lines issuing from points y of the x-axis, with speed uQ(y) (see Fig. 1).

FIG. l

As we shall show, if u0 is a C1 function, these straight lines simply cover a neigh-
borhood of the x-axis. Since the value of u along the line issuing from the point y
is u0(y), u(x, t) is uniquely determined near the x-axis.

An analytical form of this construction is shown in Fig. 2. Let (x, t) be any point,
y the intersection of the characteristic through x, t with the x-axis. Then u = u(x, t)
satisfies
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Assume u0 differentiable; then, according to the implicit function theorem, (3.5)
can be solved for u as a differentiable function of x and f for f small enough, and

Then if u'Q is ^0 for all x, u, and ux as given by formulas (3.6) remain bounded for
all t > 0; on the other hand, if u'0 is <0 at some point, both u, and ux tend to oo
as 1 + u'0au(u0)t approaches zero. Both these facts can be deduced from the
geometric form of the solution contained in Fig. 1 as follows.

In the first case, when w0(x) is an increasing function of x, the characteristics
issuing from the x-axis diverge in the positive r direction, so that the characteristics
simply cover the whole half-plane r > 0. In the second case there are two-points
}'j and y2 such that y\ < v2, and Uj = u0(yl) > l<o(>;2) — "2^ tnen by (3-7) also
tft = a ( W j ) > a(u2) = «2 so that the characteristics issuing from these points
intersect at time t = (y2 — yl)/(a1 — a2) (see Fig. 3). At the point of intersection,
u has to take on both values ul and u 2 , an impossibility.

Both the geometric and the analytic argument prove beyond the shadow of a
doubt that if a(u0(x}) is not an increasing function of x, then no function u(x, t)
exists for all t > 0 with initial value u0 which solves (3.3) in the ordinary sense\
We saw however in §2 that bounded, measurable functions u which satisfy (3.1)
in the sense of distributions can be regarded as satisfying the integral form of the
conservation law of which (3.1) is the differential form. We turn now to the study
of such distribution solutions, starting with the simplest kind—those satisfying

6

Substituting (3.6) into (3.3) we see immediately that u defined by (3.5) satisfies
(3.3).

Let us assume that (3.3) is genuinely nonlinear, i.e., that au ^ 0 for all u, say

FIG. 3



(3.1) in the ordinary sense on each side of a smooth curve x = y(t) across which u
is discontinuous. We shall denote by u, and ur the values of u on the left and right
sides, respectively, of x — y. Choose a and b so that the curve y intersects the

FIG. 4

interval a <; x ^ b at time t (see Fig. 4). Denoting by 7(r) the quantity

The conservation law asserts that

Here we have used the handy abbreviations

for the speed with which the discontinuity propagates. Since on either side of the
discontinuity (3.1) is satisfied, we may set ut — —fx in (3.8) for x < y and x > y,
obtaining after carrying out the integration that

where we have used the abbreviation

we have

HYPERBOLIC SYSTEMS OF CONSERVATION LAWS 7
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Combining this with the above relation we deduce the jump condition

where [u] = ur — u, and [/] = fr — ft denote the jump in u and in/across y.
We show now in an example that previously unsolvable initial value problems

can be solved for all t with the aid of discontinuous solutions. Take

The geometric solution (see Fig. 5) is single-valued for t ^ 1 but double-valued

thereafter. Now we define for t ^ 1,

The discontinuity starts at (1.1); it separates the state ut = 1 on the left from the
state ur = 0 on the right; the speed of propagation was chosen according to the
jump condition (3.10), with/(u) = \u2 :

Introducing generalized solutions makes it possible to solve initial value
problems which could not be solved within the class of genuine solutions. At the
same time it threatens with the danger that the enlarged class of solutions is so
large that there are several generalized solutions with the same initial data. The
following example shows that this anxiety is well founded:

8

FIG. 5



HYPERBOLIC SYSTEMS OF CONSERVATION LAWS 9

The geometric solution (see Fig. 6) is single-valued for t > 0 but does not deter-

mine the value of u in the wedge 0 < x < t. We could fill this gap in the fashion of
the previous example and set

The speed of propagation was so chosen that the jump condition (3.10) is satisfied.
On the other hand, the function

satisfies the differential equation (3.3) with a(u) = u, and joins continuously the
rest of the solution determined geometrically. Clearly only one of these solutions
can have physical meaning; the question is which?

We reject the discontinuous solution (3.12) for failure to satisfy the following
criterion:

The characteristics starting on either side of the discontinuity curve when continued
in the direction of increasing t intersect the line of discontinuity. This will be the
case if

Clearly this condition is violated in the solution given by (3.12).
If all discontinuities of a generalized solution satisfy condition (3.13), no

characteristic drawn in the direction of decreasing t intersects a line of discontinuity.
This shows that for such solutions every point can be connected by a backward
drawn characteristic to a point on the initial line; therein lies the significance of
condition (3.13). When applied to the equations of compressible flow, this
generalization amounts to requiring that material which crosses the discontinuity
should suffer an increase of entropy. For this reason condition (3.13) will be called
the entropy condition.

A discontinuity satisfying the jump relation (3.10) and the entropy condition
(3.13) is called a shock. The task before us is to investigate whether every initial
value problem for (3.1) has exactly one generalized solution, defined for all t ^ 0,
which has only shocks as discontinuities.

FIG. 6
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We shall first treat the case when condition (3.7) is satisfied, i.e., a(u) is an
increasing function of u. Clearly this is so whenever f(u) is a convex function of u

FIG. 7

(see Fig. 7). Such a function lies above all its tangents:

Let u be a genuine (i.e., continuous and differentiable) solution of (3.1), and
suppose that w0(x) = w(x, 0) is 0 for x large enough negative; then the same is
true of u(x, t) for any t > 0 for which u is defined. We introduce the integrated
function U(x, t) defined as follows:

Denote by y the point where the line dx/dt — a(v) through x, t intersects the
x-axis; clearly,

Integrating (3.19) along this line from 0 to t we obtain, for t ^ 0,

then

Applying inequality (3.14) with U = u and any number v we obtain that

where we have adjusted/so that

Integrating (3.1) from — oo to x and using (3.16) we obtain



Suppose u(x, t) is a generalized solution. Relation (3.17) is the integral form of
the conservation law (3.1), so it follows that when/is convex, inequality (3.24) is
valid for generalized solutions as well.

If all discontinuities of the generalized solution u are shocks, then every point
(x, t) can be connected to a point y on the initial line by a backward characteristic.

ana

Here b is the inverse function of a, and g is defined by

where y = y(x, t) is that value which minimizes

This inequality holds for all choices of y; for that value of y for which v, given by
(3.22), equals u(x, r), the sign of equality holds in (3.19) along the whole characteristic
dx/dt = u issuing from (x, f); therefore equality also holds in (3.24). We summarize
this result as follows.

THEOREM 3.1. Let u be a genuine solution of (3.1); then

Clearly, since a and b are inverse functions,

Denote a(0) by c; then b(c) = 0 and in view of the normalization (3.18), we have
from (3.23) that g(c) = 0. Introducing the function g on the right side of (3.21) we
obtain

Denote by g the function

HYPERBOLIC SYSTEMS OF CONSERVATION LAWS 11

Denote by b the inverse of the function a; from (3.20) we obtain
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For that value of y the sign of equality holds in (3.24); thus Theorem 3.1 applies
also to generalized solutions of (3.1) whose discontinuities are shocks. We show
that also the converse holds, thereby proving the existence of solutions, with
shocks, with arbitrarily prescribed integrable initial data.

THEOREM 3.2. Formula (3.25H3.26) defines a possibly discontinuous function
w(x, t)for arbitrary integrable initial values u0(x); the function u so defined satisfies
(3.1) in the sense of distributions, and the discontinuties ofu are shocks.

Proof, (i) If UQ is integrable, LJG is bounded. As may be seen from (3.27), g is a
convex function which achieves its minimum at z — c; therefore, the function G
defined by (3.26) achieves its minimum in y at some point or points.

LEMMA 3.3. For fixed t, denote by y(x) any value of y where G(x, y) achieves its
minimum. Then y(x) is a nondecreasing function of x.

Proof. We have to show that for x2 > xl, G(x2, y) does not take on its minimum
for y < yl = y(x,). In particular, we shall show that for y < yn

Multiplying this last inequality by t and adding to (3.30) we obtain (3.29); this
completes the proof of the lemma.

It follows from the lemma that, for fixed r, for all but a denumerable set of x
the minimum of G(x, y, r) is achieved at exactly one point y = y(x, r), which is a
monotonic increasing function of x. Thus u(x, t) is well defined by (3.25) at all but
these points.

(ii) We can combine (3.25) and (3.26) into one formula

For by the minimizing property of y x ,

From Jensen's inequality we have that for xl < x2 and y < yl,

where

Similarly,

where



and similarly we see that

which shows that at points of discontinuity ur < ut, as required by the shock
condition.

(iv) The solutions defined by (3.25), (3.26) have the semigroup property, i.e., that
if M(X, tj is taken as new initial value, the corresponding solution at time t2
furnished by (3.25), (3.26) equals u(x, tl + t 2 ) . This is easily verified by a simple
argument.

We turn now to the problem of uniqueness.
THEOREM 3.4. Let u and v be two piecewise continuous generalized solutions of

(3.1); assume that f is convex and that all discontinuities of both u and v are shocks.

here k is a Lipschitz constant for b. The result is a one-sided Lipschitz condition
for u:

HYPERBOLIC SYSTEMS OF CONSERVATION LAWS 13

Denote by VN the function

Clearly,

provided that we make use of the identity

It follows from these relations that

letting N ->• oo we obtain in the limit relation (3.1) for u.
(iii) Since Lemma 3.3, y(x, t) is an increasing function of x, and since b is an

increasing function, we have for x t < x2 that
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Then

is a decreasing function o f t , where the norm is the L± norm with respect to the x
variable.

COROLLARY. Ifu = v at t = 0, u = vfor all t > 0. (This is the uniqueness theorem
we were looking for.)

Proof. We can write the L, norm of u — v as

where the points are so chosen that

for yn < x < yn+ t ; of course the yn are functions of /.
There are two cases:
(i) yn is a point of continuity of both u and v; in this case

Since values of solutions are constant along characteristics, it follows that in this
case yn is a linear function of t.

(ii) yn is a point of discontinuity of one of the functions u or v; in this case yn

is a shock curve.
Differentiate (3.32) with respect to t :

On the interval ya,yn+i both u and v satisfy (3.1) in the sense of distributions.
Setting ut = —f(u)x, vt = —f(v)x in (3.34) we obtain, after carrying out the
integration,

In case (i) u(y) = v(y) which makes (3.35) equal 0. We turn now to case (ii).
Suppose that u has a shock at y — yn+1 and that v = v(g) lies between u, and ur:

Then u — v is positive in (yn, yn+ J, so n is even. According to the jump relation
(3.10),
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Substituting this into (3.35), we obtain at the endpoint yn+1 with u = u;,

Since/is a convex function and since by (3.36) v lies in the interval (u r ,u,) , it
follows from Jensen's inequality that the right side of (3.37) is negative. Similarly,
also the contribution at the lower endpoint to (3.35) is negative. This shows that
(d/dt)\\u — v\\ is always fSO, so that as t increases \\u — v\\ decreases. This completes
the proof of the theorem.

The case when y is a discontinuity for both u and v can be treated similarly.
In the derivation of Theorem 3.4 we can omit the requirement that/be convex

if we replace the entropy condition (3.13) by the following:
(i) If ur < u,, then the graph of/over [ur, ut] lies below the chord (see Fig. 8):

(ii) If u, < u, the graph of/over [u,, ur] lies above the chord (see Fig. 9):

(3.38n) /(aur + (1 - a)u,) ^ a/(ur) + (1 - a)/(u,) for 0 ̂  a ̂  1.

Conditions (3.38) are called the generalized entropy conditions.
Let/(u) be an arbitrary C1 function of w ; let u(x, /) be a distribution solution of

(3.1) which is a genuine solution outside of a finite number of discontinuities.

FIG. 9



is not a decreasing function oft.
The uniqueness theorem stated above is not very interesting unless we can show

that the generalized entropy condition is not too restrictive, i.e., that every initial
value problem u(x, 0) = u0(x) has a distribution solution u of which the dis-
continuities satisfy the generalized entropy condition. Such a solution u can be
constructed, as the limit of solutions UA of the parabolic equation

It follows easily from the maximum principle that (3.39) has at most one solution;
it is also true that a solution UA exists for all r, and that as A -»• 0 these solutions
converge in the Lj sense to a limit u. We shall not present these proofs, but we shall
show that this limit is a distribution solution of (3.1) which satisfies the generalized
entropy condition. To show the truth of the first statement we multiply (3.39) by
a CQ test function </> and integrate by parts; we obtain

16 PETER D. LAX

A discontinuity in u is called a shock if ur and u, satisfy one of the entropy conditions
(3.38).

The proof of Theorem 3.4 yields the following more general result.
THEOREM 3.5. Let f be any Cl function, u and v two distribution solutions o/(3.1)

of which all discontinuities are shocks. Then

is a decreasing function oft.
It follows in particular that two such solutions which are equal at t = 0 are equal

for all t.
The proof of Theorem 3.5 also demonstrates the following converse.
COROLLARY. Ifu is a distribution solution o/(3.1) of which one of the discontinuities

fails to satisfy the entropy condition (3.38), then there is a genuine solution v such that

Let A -> 0; the left side converges to

the right side converges to 0. This proves that u is a distribution solution of (3.1).
To prove that u satisfies the entropy condition, we show first that for any two

solutions UA and v^ of (3.39),
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is a decreasing function of /. To see this we write

On account of (3.40) the second term on the right is zero; substituting from (3.39)
into the first term and carrying out the integration we obtain

Again the second sum on the right is zero, on account of (3.40). We claim that each
term in the first sum is nonpositive; for ( — IT^w^ — uj = p is nonnegative in
the interval and by (3.40) zero at the endpoints; so px is nonnegative at the left
endpoint, nonpositive at the right endpoint. This completes the proof that

is a decreasing function of /. If u is the L^ limit of u-, and v the Lv limit of i^, also
||w(0 — 0(011 is decreasing.

It is not hard to show that every genuine solution v of (3.1) is the limit as X -* 0
of the solutions v± of the parabolic equation. Therefore it follows that if u is a
distribution solution of (3.1) which is an Ll limit of solutions UA of (3.39) and if
v is any genuine solution of (3.1), then \\u(t) — 0(011 is a decreasing function of t.
According to the coroUary to Theorem 3.5 it follows then that all discontinuities
of u satisfy the generalized entropy condition, as asserted.

Being rid of the convexity conditions makes it possible to extend these notions
and the existence and uniqueness theorems to single conservation laws in any
number of space variables.

4. The decay of solutions as t tends to infinity. Suppose/(w) is a convex function;
then Theorem 3.2 gives an explicit expression for the solutions u of (3.1) in terms
of their initial data:

where y minimizes

where u^ — v^ changes sign at the points yn. Since solutions of (3.39) are continuous,

Differentiate \\u^ — uj|:



combining this with (4.8) we obtain

Suppose that the initial value u0(x) is zero outside the interval ( — A, A); then
UQ(y) is zero for x < —/4, some constant for A < x. According to (4.8), the
minimum value of y lies in the interval
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Let us see what we can deduce from (4.1) about the behavior of solutions for
large t. We recall that g is a convex function and b a monotonically increasing one,
and that g takes on its minimum at c = a(0) and

We denote by k the quantity

Let us assume that/is strictly convex; then k > 0. We further assume that b' lies
between two positive constants for all u:

It follows from this and (4.3) that

then

Suppose the initial value u0 of u is in L t ; then for every y, U0(y) = Jy_^ u0 dx
is bounded in absolute value by ||MO|| = M. Using (4.6) we see that for all y,

G(x, x + ct, t) — U0(x + cr) is 5SM; this shows that G(x, y , t ) ^ M at the mini-
mizing point. Combining this with (4.7) we see that

It follows from (4.5) and b(c) = 0 that

Thus, by (4.1),
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If x < ct — const, ^/t — A, y lies in the interval y < — A where the value of U0(y)
is independent of y ; therefore the minimum of G is taken on at the point which
minimizes tg((x — y)//); this value is y = x — ct. Similarly, for

the minimizing value of y is y = x — ct. Since b(c) = 0, we conclude from (4.1)
that M(X, t) = 0 for x outside of

This result, combined with (4.9), can be expressed thus: Every solution u whose
initial value is zero outside a finite interval is, at time t, zero outside an interval
whose length is 0(^/7); inside that interval u is 0(l/v

/7).
A more detailed analysis of the explicit formula yields the following more

precise statement about the behavior of solutions for large t.
THEOREM 4.1. Define the 2-parameter family of functions v(p,q), p,q^.O as

follows:

Let u(x, t) be any solutions with shocks of

where f is convex, /'(O) = c,/"(0) = h. Then

tends to 0 as I -> oo, where \\ • \\ is the L\ norm and

We shall not present a proof of this theorem but we shall present a verification
of one of its consequences.

We introduce the following abbreviations:

In terms of these (4.12) can be written as



In words: / _ and I + are time invariant functionals of solutions.
We shall present now a direct proof for the in variance of / _ .
Let u be some solution of (4.11), possibly with shocks; denote by M(r):

here we have used the fact that u( — oo, t) = 0 and that/(0) = 0. Taking y to be
X'i) — y^ y(h) = ^2' respectively, and using the definition of 3' as minimum, we
obtain the inequalities

and by y(f) any of the values y where the indicated minimum is taken on. Our
aim is to show that M is independent of t.

According to the integral form of the conservation law, for any f t and t2 and
any y,

which imply that

where

here/(y, t) abbreviates f(u(y, t)).
LEMMA. y(t), t is a point of continuity o/u, and

Proof. By the minimizing property of y we must have

It follows then from Theorem 4.1 that \\u(t + T\p,q) — v(t,p,q)\\ -> 0; applying
(4.12) to u(x, t + T) in place of u(x, t) we conclude that for any T
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It follows easily from the definition of v in (4.10) that, for any T,
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Since/was assumed convex, the entropy condition is that u, > ur, so it follows
from (4.17) that y(t) cannot be a point of discontinuity, and that u(y, /) = 0.

Since the set of minimizing points y(t), t is closed, it follows that in any compact
portion of the (x, /)-plane, y(t), t has a positive distance from any shock of strength
\ur — u,\ = £. From this it follows that as t2 -* ' i < the oscillation of u(y^ t) and
of u(y2, t) over ( t 1 , t 2 ) tends to 0. According to (4.16), u(y{, t { ) = u(y2, t 2 ) = 0, so
u ( y l , t ) and u(y2,t) tend to 0 uniformly on ( f i , / 2 ) as h ~+ ' i - Since/(O) = 0, it
follows that likewise F, the maximum of/over this interval, tends to 0 as t2 -* ? i -
But then we deduce from (4.12) that

It is a consequence of the integral form of the conservation law that for solutions u
which are zero at x = ±00, I0(u) is independent of / ; thus the invariance of 1 +
follows from that o f / _ and /0.

The quantity 70 is a natural invariant built into the conservation law; it is
remarkable that there exist other, "unnatural" invariants.

THEOREM 4.2. Equation (3.1) has exactly 2 independent invariant functional
continuous in the L t topology.

Proof. Let / be any invariant functional continuous in the Ll topology; by
Theorem 4.1,

As remarked in §3, any differentiate solution u of (4.11) is constant along
characteristics

which proves the constancy of M and shows the invariance of the functional / _ .
The invariance of /+ follows similarly; alternatively we observe that the minimum
and maximum in (4.13) occur for the same value of y; this implies that

The value of the right side is determined by the values of p and q, which in turn
are determined by / _ ( u ) and I + (u). Therefore, the value of I(u) is a function of the
values of 1+(u) and I -(u), as asserted.

Using the explicit formula (4.1) we deduced, in (4.9) and Theorem 4.1, that
solutions whose initial values lie in Li decay to 0 as A -> oo. We shall present
now another method for studying the behavior of solutions as t -> oo, one that
does not rely on the explict formula (4.1). With the aid of this method we can
show that, as t -» oo, solutions whose initial values are periodic tend uniformly
to their mean value UQ :
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Suppose there is a shock y present in u between the characteristics xl and x2

(see Fig. 10). Since according to (3.13) characteristics on either side of a shock

FIG. 10

run into the shock, there exist at any given time T, two characteristics yl and y2

which intersect the shock y at exactly time T. Assuming that there are no other
shocks present we conclude that the increasing variation of u on (xjr), y,(f)) , as
well as on (x2(t),y2(t)), is independent of t. According to condition (3.13), a(u)
decreases across shocks, so the increasing variation of a(u] along [x1(T),x2(T)]
equals the sum of the increasing variations of a(u] along [Xj(0), >'i(0)] and along
Ly2(0),x2(0)]. This sum is in general less than the increasing variation of u along
[xj(0), x2(0)]; therefore we conclude that if shocks are present, the total increasing
variation of a(u) between two characteristics decreases with time.

Let x t ( r ) and x2(t) be a pair of characteristics, 0 5S t ^ T. Then there is a whole
one-parameter family of characteristics connecting the points of the interval
[Xj(0), x2(0)], t = 0 with points of the interval [x^T), x^T)], / = T; since u is
constant along these characteristics, u(x, 0) on the first interval and u(x, T) on the
second interval are equivariant. More generally, if a and T are noncharacteristic
curves each connecting x, to x2 , u along a and T are equivariant. Since equivariant
functions have the same total increasing and decreasing variations, we conclude
that the total increasing and decreasing variations of a differentiate solution between
any pair of characteristics are conserved.

Denote by D(t) the width of the strip bounded by x t and x 2 :

Differentiating (4.20) with respect to t and using (4.19) we obtain

Integrating with respect to / we obtain
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We give now a quantitative estimate of this decrease. Let 70 be any interval of
the x-axis; we subdivide it into subintervals [ )>_/_ i , .y , - ] , j — 1, • • • , n, so that
u(x, 0) is alternately increasing and decreasing on these intervals (we assume for
simplicity that u0 is piecewise monotonic). We denote by yj(t) the characteristic
issuing from the;th point y,, with the understanding that if y/f) runs into a shock,
yj(t) is continued as that shock.

It is easy to show that for any t > 0, u(x, t) is alternately increasing and decreasing
on the intervals (j;^ ^r), yj(t)). Since across shocks u decreases, the total increasing
variation A+(T) of a(u) across the interval 1(T) = [y0(T),yn(T)] is

Summing over / odd and using (4.23) we obtain

Since the intervals [x_,._ t(T), Xj(T)] = [yj_ ^T), y}(T)] are disjoint and lie in /(T),
the sum of their lengths cannot exceed the length L(T) of 7(0- So we deduce that

Suppose the initial value of u is periodic, with period p. Then by uniqueness it
follows that u is periodic for all p. Take L0 to be of length p\ then L(T) also has
length p and we deduce from (4.24) that A + (T) ^ p/T. Since the increasing
variation of a periodic function per period is twice its total variation, we have
proved the following theorem.

THEOREM 4.3. For every space periodic solution u of (4.11),

Relation (4.25) shows that the total variation of a(u) per period tends to zero
as T tends to oo. Since the mean value u0 of any periodic solution of a conservation
law is independent of t, it follows that u(x, T) tends to u0 uniformly as T tends to oo.
Suppose |fl'(w0)l = h T^ 0; it follows from (4.25) that the total variation of u(T)
per period is ^2p/hT; so we conclude that for T large enough,

where u}_ t(T) denotes the value of u on the right edge of y^_ t(T), Uj(T) denotes
the value of u on the left edge of y}{T); in case that y^_ ^T) and yj(T) are the same,
the y'th term in (4.23) is zero. Suppose, yj_1(T) < yj(T)\ then there exist
characteristics x}_ j ( r ) and Xj(t) which start at t = 0 inside (^_ l, y}) and which at
t = T run into >>;_ { ( T ) , and y^T) respectively. The value of u along x;(r) is Uj(T).

Denote xj(t) — Xj_ j(?) by D-(t); according to (4.22)



where the ith row of the matrix A-is the gradient of/ with respect to u. We assume
that the system (5.2) is hyperbolic, i.e., that for each value of u the matrix A has
n real, distinct eigenvalues /I , , • • • , /.„, labeled in increasing order. Since A depends
on u, so do the eigenvalues /.k and the corresponding right and left eigenvectors
rk and lk.

Genuine nonlinearity played an important role for single conservation laws;
this was the requirement that A be a nonconstant function of u, i.e., that Au ^ 0.
The analogous condition for system is not merely that grad uAk be nonzero, but
that it be not orthogonal to r fc, the corresponding eigenvector. If this is so, we
call the /cth field genuinely nonlinear, and normalize rk so that

For systems we require that for some index k, I ^ k ^ n,

must hold across every discontinuity, where s is the speed of propagation of the
discontinuity.

Next we formulate an entropy condition for systems. For single convex (or
concave) equations this condition requires that the characteristics on either side
of a discontinuity run into the line of discontinuity, which is the case if the
characteristic speed on the left is greater, on the right less, than s:

If on the other hand rk • grad Ak = 0, we call the /cth characteristic field linearly
degenerate.

We turn now to the study of piecewise continuous solutions of (5.1) in the integral
sense; each of the n conservation laws must satisfy the Rankine-Hugoniot jump
condition, i.e.,
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Comparison of (4.26) with (4.9) shows that periodic solutions decay faster than
solutions whose initial values are integrable.

The estimate (4.26) is, in contrast to (4.9), absolute, inasmuch as the right side
is independent of the amplitude of the solution.

5. Hyperbolic systems of conservation laws. In this section we shall study systems
of conservation laws,

where each/; is a function of u t , ••• , un ; we shall denote the column vector
formed by ul. • • • , un by u. Carrying out the differentiation in (5.1) we obtain
the quasi-linear system



These inequalities assert that k characteristics impinge on the line of discontinuity
from the left and n — k + 1 from the right, a total of n + 1. This information
carried by these characteristics plus the n — 1 relations obtained from (5.4) after
eliminating s are sufficient to determine the In values which u takes on on both
sides of the line of discontinuity.

A discontinuity across which (5.4) and (5.5) are satisfied is called a k-shock.
We give now a description of all weak /c-shocks, i.e., those where ur and ut differ

little; it is understood that ul is to the left of ur.
THEOREM 5.1. The set of states ur near u, which are connected to some given state

u, through a k-shock form a smooth one-parameter family ur = u(e), — e0 < £ ̂  0,
u(0) = u,; the shock speed s also is a smooth function ofs.

We shall omit the proof of this result but shall calculate the first two derivatives
of U(E) at e = 0. Differentiating the jump relation

while
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we obtain, using the symbol ' = d/ds,

At e = 0 we have [u] = 0, so there

which can be satisfied with u ^ 0 only if s(0) is an eigenvalue of A:

and ti(0) an eigenvector:

By reparametrizing we can make a = 1. Differentiating (5.6) once more and setting
e = 0 we obtain (omitting the subscript k)

Substituting (5.7) and (5.8), with a = 1 we obtain

To determine s and u we turn to the eigenvalue relation

restricted to u = u(e) and differentiate with respect to e:

Subtract this from (5.9):



where A = Ak is one of the eigenvalues of A; h is called a k-rarefaction wave.
Setting a = 1 in (5.14) we obtain

Using relation (5.3) we obtain, after differentiating the first relation in (5.14) and
using the second, that

This is satisfied by

which is the same as

Let us denote x/t by £ and differentiation with respect to £ by '; substituting (5.13)
into (5.2) we obtain

is satisfied for e < 0 and not for E > 0; that is why in Theorem 5.1 the parameter e
is restricted to e ^ 0.

Next we turn to an important class of continuous solutions, centered rarefaction
waves; these are solutions which depend only on the ratio (x — x0)/(r — f 0 ) , x0, r0

being the center of the wave.
Let u be a rarefaction wave centered at the origin:

Thus the entropy condition (5.5)

It follows from (5.11) that, nodulo terms 0(e2),

Equation (5.10) has the solution u — r = fir; by a change of parameter e we can
accomplish that /? = 0; so

Since by (5.3), 1 = u grad A = r grad /I = 1, we obtain
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Taking the scalar product with the left eigenvector / belonging to /I we obtain
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Abbreviate A(u,) by A; the differential equation (5.14') has a unique solution
satisfying the initial condition

h is defined for all ^ close enough to L
Let e be a number ^0, so small that h is defined at A + e; denote by ur the

value

We construct now the following piecewise smooth function u(x, f ) , defined for
t ^ 0 (see Fig. 11):

FIG. 11

This function u satisfies the differential equation (5.2) in each of the three regions,
and is continuous across the lines separating the regions. We shall say that in u
the states u{ and ur are connected by a centred k-rarefaction wave.

THEOREM 5.2. Given a state u,, there is a one-parameter family of states ur = u(e),
0 ^ E ̂  £0, which can be connected to u, through a centered k-rarefaction wave.

Theorems 5.1 and 5.2 can be combined.
THEOREM 5.3. Given a state u,, it can be connected to a one-parameter family of

states ur = u(e), — e0 < e < e0, on the right of M, through a centered k-wave, i.e.,
either a k-shock or a k-rarefaction wave; w(e) is twice continuously differentiate
with respect to e.

The only part that needs proof is the continuity of du/de and d2u/de2 at e = 0.
From (5.8) and (5.14) we see, since a = 1 in both cases, that du/ds = r(u,)fore = ±0;
to show that d2u/de2 is continuous at £ = 0 we differentiate (5.14') with respect to e
to obtain
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where u0 and un are two vectors.
THEOREM 5.4. If the states u0 and un are sufficiently close, the initial value problem

(5.19) has a solution. This solution consists ofn+\ constant states u0,ul, • • • , un,
separated by centered rarefaction or shock waves, one of each family (see Fig. 12).

since the r,- are linearly independent, it follows from the implicit function theorem
that a small g-ball is mapped one-to-one onto a neighborhood of u0; this completes
the proof of Theorem 5.4.

We describe now a method developed by James Glimm for solving any initial
value problem u(x, 0) = u0(x) where the oscillation of u0 is small. The solution u
is obtained as the limit as h -> 0 of approximate solutions uh constructed as
follows:

(I) uh(x, 0) is a piecewise constant approximation to u0(x):

where m} is some kind of mean value of u0(x) over the interval (jh, 0 + 1 )h).

Since w'(0) = ti(0), we see, comparing (5.18) and (5.12), that u" = u at e = 0. This
completes the proof of Theorem 5.3.

If the fcth characteristic field of (5.1) is degenerate, then (5.1) has discontinuous
solutions whose speed of propagation is

These are called contact discontinuities.
We turn now to the so-called Riemann initial value problem, where the initial

function u0 is

Proof. The state u0 can be connected through a 1-wave to a one-parameter
family of states u^ej to the right of M O ; u{ in turn can be connected through a
2-wave to a one-parameter family u2(£i > £a) °f states to the right of U j , etc. Thus
u0 can be connected through a succession of n waves to an n-parameter family of
states un(e,, • • • , &„}. By (5.8H5.14),

FIG. 12
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(II) For 0 ^ t < /i/A, ufc(x, i) is the exact solution of (5.1) with initial values
"*(*> 0) given by (5.20); here A is an upper bound for 2|/llt(«)|. This exact solution is
constructed by solving the Riemann initial value problems

FIG. 13

(III) We repeat the process, with t = h/A. as new initial time in place of t — 0.
It is not at all obvious that this process yields an approximate solution uh which

is defined for all t; to prove this one must show that the oscillation of u(x, nh)
remains small, uniformly for n = 1,2, • • • so that the Riemann problems (5.2 lj)
can be solved, and so that X does not tend to oo. This estimate turns out to depend
very sensitively on the kind of averaging used to compute the mean values nij.
In the scheme introduced by Glimm the quantities m,- are computed as follows:
A sequence of random numbers a t , a 2 , • • • , uniformly distributed in [0,1], is
chosen; m", the mean value of u(x, nh/fy over the interval (jh, (y + l)h) is taken to
be

Glimm shows:
(A) Given any e, we can choose r\ so small that if the oscillation and total variation

of uQ are < r\ then for any t, the oscillation and total variation of u(x, /) along any
space-like line is < e.

(B) A subsequence of uh converges in the L1 norm with respect to x, uniformly
in t, to a limit u.

j = 0, ± 1, • • • . Since the oscillation of u0 is small, m^ l and m-t are close and so
according to Theorem 5.4 this initial value problem has a solution consisting of
constant states separated by shocks or centered rarefaction waves issuing from
the points x = jh, t = 0 (see Fig. 13). As long as

these waves do not intersect each other and so the solutions of the initial value
problem (5.2lj) can be combined into a single exact solution uh.
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(C) For almost all choices of the random sequence {aB}, this limit u is a solution
in the integral sense of the conservation law (5.1).

For proof we refer to Glimm's paper; here we merely point out how Glimm's
scheme treats a particularly simple initial value problem, a Riemann initial value
problem:

where ut and ur are so chosen that the exact solution u consists of the two states
w,, ur separated by a single shock

where 5 is^the speed with which the shock separating the two states propagates.
By assumption, A > |s|. Let us assume that 0 < s; then Glimm's recipe (5.23)
gives

where

Repeating this analysis n times we obtain

where Jn = number of a,, j = 1, • • • , n, which satisfy

Since {o^} is a uniformly distributed random sequence,

with probability 1; this shows that the approximate solution given by (5.25)
tends almost certainly to the exact solution given by (5.24).

Note that if, instead of using random sequences we use a single sequence of
equidistributed numbers {a^}, i.e., numbers for which (5.27) holds, we conclude
that uh tends to u as h -» 0.

We conclude by stating precisely the existence theorem whose proof was
outlined above, and by stating some open problems.

THEOREM 5.5. The initial value problem for the system of conservation laws (5.1)
has a solution for all t provided that the initial function u0 has sufficiently small
oscillation and total variation.
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What is lacking at present is a proof that the solution it constructed by Glimm's
scheme satisfies the entropy condition, and that it is uniquely determined by u0.
Some remarks about both points will be made in § 6.

Another outstanding problem is to remove the requirement that u0 have small
oscillation.

Inequalities (3.14), (3.38) and (5.5) are criteria which reject certain discontinuities
as physically unrealizable even though the conservation laws are satisfied across
them; we designated these criteria as entropy conditions. We shall introduce now
a notion of entropy which can be related to these criteria.

We start with a system of conservation laws (5.1). Let U be some function of
ul, • • • , un. When does U satisfy a conservation law, i.e., a law of the form

where the gradient is with respect to u. To deduce this from (5.2),

we multiply (5.2) on the left with grad U; (5.28) results if and only if the relation

holds. This is a system of n partial differential equations for U and F; for n ^ 2
it is overdetermined and has no solution in general; there are, however, special
cases of some importance with a nontrivial solution, for example, in gas dynamics.
A general class of equations where a solution exists are the symmetric ones, i.e.,
when A is a symmetric matrix. In this case,

Relation (5.30) is the compatability relation for the existence of a function g(u)
satisfying

It is then easy to verify that

satisfy (5.29).
The role of entropy conditions is to distinguish those discontinuous solutions

which are physically realizable from those which are not. Another way to
characterize the physically realizable solutions is to identify them as limits of
solutions of equations in which a small dissipative mechanism has been added to

where F is some function of ul, • • • , unl Carrying out the differentiation in (5.28)
we obtain



Suppose U is convex, i.e., the matrix of its second derivatives is positive definite;
then we deduce that
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the laws already embodied in (5.1). A particular example of such a dissipative
mechanism is artificial viscosity; here the augmented equation is

Multiply this by grad U; if (5.29) is satisfied we obtain

We have the identity

where

substituting this into (5.33) we obtain, since X > 0, that

Let A -> 0; the right side tends to zero in the sense of distributions and we deduce
the following theorem.

THEOREM 5.6. Let (5.1) be a system of conservation laws which implies an additional
conservation law (5.28); suppose that U is strictly convex. Let u(x, t) be a distribution
solution of (5.1) which is the limit, boundedly, a.e., of solutions of (5.32) containing
the artificial viscous term. Then u satisfies the inequality

The following are immediate consequences o/(5.34):

if finite, is a decreasing function oft.
(b) Suppose u is piecewise continuous; then across a discontinuity

We shall call conditions (5.34) and (5.36) entropy conditions; to justify the name
we have to show compatability with the previous designations.

THEOREM 5.7. Suppose that the system of conservation laws (5.1) is hyperbolic
and genuinely nonlinear in the sense of (5.3). Suppose there is a strictly convex
function U of u which satisfies the additional conservation law (5.28). Let u be a
solution of (5.1) in the integral sense which has a discontinuity propagating with



Here V is the transpose of the right eigenvector r and V" is the matrix of second
derivatives of U. Since U is convex, E is positive; this shows that E(s) is an increasing
function of £ near £ = 0. But then £(e) is negative for E negative; since by Theorem
5.1 the shock condition (5.5) restricts un(s) to negative values of £, Theorem 5.7
follows.

Next we show that the entropy condition (5.34) is equivalent to the entropy
condition in the large (3.38) imposed on solutions of single equations. We note
that in this case U can be taken to be any function of u; F can be determined from
(5.29) by integration.

THEOREM 5.8. The entropy condition (3.38) is satisfied if and only if (5.36) is
satisfied for all I/, F which satisfy (5.29) and where U is convex.

Proof. Suppose u, < ur; let z be any number between M, and un, and set

It follows from (5.29) that

Substituting these into (5.36) and using the jump relation

we obtain, after rearrangement,

which is precisely condition (3.38n); the other case can be handled similarly.

6. Pairs of conservation laws. More is known about systems of two conservation
laws than systems consisting of more than two. What is special about systems of
only two equations is the existence of Riemann invariants, which we now proceed
to describe.
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speed s. Suppose that the values on the two sides of the discontinuity are close; then
the entropy condition (5.5) holds if and only if the entropy condition (5.36) holds.

Proof. According to Theorem 5.1, the states ur which can be connected to a
given state u, through a /c-shock, form a one-parameter family of states ur = U(E),
— £Q < E < 0. Denote by E(E) the quantity on the left of (5.36):

A brief calculation using (5.8) and (5.11), and which we omit, shows that the values
of the first two derivatives with respect to £ of E(E) are zero at £ = 0, and the value
of the third derivative at £ = 0 is



We assume that (6.2) is hyperbolic, which means that the matrix A has real and
distinct eigenvalues; we denote them by A and p, so arranged that A < p; of
course A and p both are functions of u and v. We denote the corresponding left
and right eigenvector by / and r; that is
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We write the system as

where/and g are functions of u and v. Carrying out the differentiation in (6.1)
we obtain

where

and

The eigenvectors, too, depend on u and v. We shall consider functions w of u
and i; which satisfy the first order equation

This equation asserts that w is constant along the trajectories of the vector field rA.
We can construct solutions of (6.3) by taking a curve C which is not tangent to rA

at any point, and assigning arbitrary values for w along it. We shall choose w to
be strictly increasing along C. The value of u is then determined along every
trajectory intersecting C, and w has distinct values along distinct trajectories.

The function z of w, v is defined analogously as solution of

Since w has distinct values along distinct rA-trajectories, and z has distinct values
along rp-trajectories, and since in a simply connected domain of u, v space an
rp-trajectory intersects an rA-trajectory in at most one point, it follows that the
mapping

is one-to-one over any simply connected domain.



Curves satisfying (6.6) and (6.8) are called A and p characteristics respectively.
Relations (6.5) and (6.7) can be stated in words as follows.

As functions of x and /, w is constant along p-characteristics, z is constant along
^.-characteristics. After their discoverer, w and z are called Riemann invariants.

In § 3 about single conservation laws we gave a geometric argument for the
nonexistence of continuous solutions beyond a certain time. One ingredient of
that proof was the constancy of u along characteristics; the other was the fact that
characteristics are straight lines. The first ingredient is present here: w and z are
constant along characteristics, but it is no longer true that characteristics are
straight lines; so the simple geometric reasoning given in § 3 cannot be extended
to systems. We present now a different nonexistence proof for a single equation
which is capable of generalization.

The equation (3.3) satisfied by u is

differentiate this with respect to x:

Abbreviate ux by q; the above can be written then as

where q' abbreviates the directional derivative

where • is differentiation in the direction

Similarly,

where ' denotes differentiation in the direction

Multiply (6.2) by grad w; using the above relation, and the chain rule, we obtain

Similarly,

P-
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It is well known that the left and right eigenvectors of a matrix with distinct
eigenvalues are biorthogonal. It is here that we exploit that n = 2: since by (6.3)
grad w is orthogonal to r^, it follows that grad w is a left eigenvector with eigenvalue
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Equation (6.9) is an ordinary differential equation for q along the characteristic
and can be integrated explicitly:

This is an ordinary differential equation for q along each p-characteristic, similar
to (6.9) except that the coefficient k of q2 is not constant. Nevertheless an explicit
formula for q can be written:

the resulting equation can be rewritten as

Multiply this by eh; using the abbreviations

Substituting this into (6.13) we obtain

Since according to (6.5), w' — 0,

Let h denote a function of w and z which satisfies

substituting this into (6.11) we obtain

From (6.7) we deduce that

Abbreviating wx by p we can put this as

where qQ = q(Q) and k = a'(u) constant along the characteristic. This formula
shows that if qQk > 0, g(t) is bounded for all t > 0, while if qQk < 0, q(t) blows
up at t = — \/q0k.

We imitate the above proof for the system (6.5), (6.7) as follows. Differentiate
(6.5) with respect to x:



Substituting this into (6.16) we conclude that if q0 > 0, q(t) stays bounded, if
qQ < 0, q(t) becomes unbounded after a finite time. We see from (6.14) that the
sign of q0 is the same as that of p0, the initial value of wx. So we can summarize
what we have proved as follows.

THEOREM 6.1. Suppose condition (6.17) is satisfied for a system of equations (6.2).
Let u,v be a solution whose initial values are bounded', then ifwx(x,0) is <0 at any
point, the derivatives of the solution become unbounded after a finite time.

A similar result holds with respect to the other variable z, and the following
converse holds:

Suppose that for a system (6.2), pw > 0 and A2 > 0. Suppose u, v is a solution of
(6.2) whose initial values are bounded, and suppose that both w(x, 0) and z(x, 0) are
increasing functions of x. Then the first derivatives of the solution remain uniformly
bounded, and the solution exists and is differentiable for all t > 0.

Remark. It is easy to verify that the condition pw =£ 0 is the same as the genuine
nonlinearity condition (5.3).

We turn now to solutions with shocks. Since there are two families of character-
istics, there are two families of discontinuities; we shall refer to them as p-shocks
and A-shocks.

How does the Riemann invariant w change across a A-shock? According to
Theorem 5.1, the states ur which can be connected to ut across a A-shock form on
one-parameter family U(B), g < 0; the first derivative of u with respect to e is given
by (5.8):

HYPERBOLIC SYSTEMS OF CONSERVATION LAWS 37

where q0 = <j(0) and

the integration along the p-characteristic.
Clearly, the boundedness or not of q(t) hinges on whether q0K(t) ever takes on

the value — 1. This is easily analyzed if pw ^ 0 anywhere; since the sign of w is
arbitrary, we might as well assume that

Suppose the initial values of w, z are bounded: |w|, |z| < M. The same inequalities
hold for all t > 0, since the value of w or z at any point equals the value of w or z
at that point on the initial line to which P can be connected by a p, or A characteristic.
Once we know that (w, z) stays for all time in a bounded set, we can conclude
from (6.17) that the function k defined as e~hpw in (6.14) is bounded from below
for all t and x by a positive constant k0. Its integral K then satisfies



Consider a solution containing a finite number of weak shocks. Let (x, t) be any
point, t > 0; draw a backward p-characteristic C through this point. According
to the shock condition (5.5), C cannot run into a p-shock; so C can be continued
all the way down to the initial line. C will intersect a finite number of A-shocks;
between two points of intersection w is constant. Since /I < p, it follows from
(6.19) that w increases along C as t decreases. So we conclude:

If (6.1S) holds, then

where y is the point where the p-characteristic through (x, t) intersects the line t = 0.
We turn now to the asymptotic behavior of solutions for large t. This problem

was studied for single conservation laws in §4; the main tool there was the
conservation of increasing and decreasing variation of continuous solutions
between two characteristics. Thanks to the existence of Riemann invariants, we
have a conservation of variation of w between p-characteristics and of z between
^-characteristics, valid for continuous solutions. We saw that for solutions of a
single conservation law with shocks the variation between two characteristics
decreases as t increases; the same argument applied to the Riemann invariants
shows that the presence of p-shocks causes the variation of w between character-
istics to decrease with increasing time, and similarly the presence of A-shocks
causes the variation of z to z to decrease. We have however the additional task
of assessing the effect of A-shocks on the variation of w and of p-shocks on z. This
has been carried out in Glimm-Lax for solutions whose oscillation is small.
The precise result proved there is the following.

THEOREM 6.2. Suppose condition (6.18), and an analogous condition for z, is
satisfied for a system of conservation laws (6.1). Then the initial value problem for
(6.1) has a solution for all bounded, measurable initial data whose oscillation is
small enough. The total variation of this solution on an interval of length t at time t
is bounded by a constant. For periodic solutions, the total variation of u and v per
period decays as

we conclude that, at least for weak shocks,

However vv is in general not zero; if we impose the requirement that vv ^ 0, say

which according to (6.4J is zero.
A similar calculation, based on (5.12), shows that also

38 PETER D. LAX

Let us calculate vv:



We show now that the compatibility equation (6.21) has solutions where U is
convex, provided that a certain condition, see (6.31) below, is satisfied; we do not
claim that this condition is necessary.

We shall construct families of solutions depending on a parameter k in this
fashion:
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Not a great deal is known about uniqueness; Oleinik has studied solutions of
systems of the special form

where/is an increasing function of u. She has shown that solutions which contain
a finite number of shocks and centered verifaction waves are uniquely determined
by their initial data.

We turn now to the entropy condition (5.36) decribed in the last section:

for all U(u, r) and F(u, r) which satisfy (5.29):

We can eliminate F from this system of equations by differentiation; we get a
homogeneous second order equation for U:

It is easy to verify that if the original nonlinear system (6.1) is hyperbolic, so is
the linear system (6.21), and the derived equation (6.22). The question is: does a
second order hyperbolic equation (6.22) have convex solutions? It is fairly easy
to show that in the small the answer is "yes," on the basis of this observation:
If the real symmetric matrix atj is indefinite, there exists a positive definite matrix
U ij such that

where

(p, Vj and Hj are functions of u and v. UN and FN are functions of u, v and k as
well, of order k~N ek", i.e.,

Expansions of this sort, with i<p in place of <p, are customary in geometrical optics.



j = 1,2, • • • , N. We solve these recursively. Equation (6.27) asserts that gradcp
is a left eigenvector of A, with eigenvalue H0/V0. Such a function is called a phase
function in geometrical optics; according to (6.4) this condition means that q> is a
Riemann invariant.

Having found <p, we substitute it into (6.28) which we solve recursively, assigning
arbitrary initial values for Uj on a noncharacteristic curve. If the initial value for
UQ is chosen to be positive, t/0 will be positive everywhere.

We have to solve a first order system to determine UN and FN; the inhomogeneous
term in this system is 0(ekv/kN) and, with the proper choice for an initial curve,
UN and VN will satisfy (6.26).

When is the function U defined by (6.24), (6.25) convex for k large enough,
i.e., when is Q = £2Uun + ^rjUuv + rj2Uvv positive for all <!;, 77? The answer can be
read off from the first two leading terms of Q in its asymptotic expansion in powers
of k. The coefficient of k2 ek<f> is
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The formal construction in the real case is the same as in the imaginary case:
We substitute (6.24), (6.25) into (6.21), divide by ek<p and equate like powers of k
to obtain

which is equal to

As we have remarked before, U0 can be chosen to be positive throughout; therefore,
the above form is positive except along

The coefficient of kek<t> consists of three terms; two of them are zero along (6.30);
the remaining one is

We make the assumption that there exists a Riemann invariant <p for which
(6.31) is positive; if this is so, U given by (6.24) is convex for k large enough.

If (6.31) is positive, the function

is convex; since ^ is a function of the Riemann invariant </> it is itself another
Riemann invariant, and so our result can be formulated thus: // there exists a
convex Riemann invariant if/ in a domain of the (w, v)-plane, there exist functions of
the form

which satisfy (6.21)', furthermore U is convex for k large enough.
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What can we deduce from the entropy condition

the kih root of the left side of (6.34) tends as k -* oo to the maximum of (]/ on S2,
while the kth root of the right side tends to the maximum of \l/ on S ^ . The resulting
inequality proves Theorem 6.3, and even a little more.

Remark. The conclusion of Theorem 6.3 agrees with the statement (6.20),
deduced under the assumption (6.18). It turns out that inequality (6.18) is equivalent
with the positivity of (6.31).

Notes.

1. Quasilinear equations. The energy inequality for symmetric hyperbolic
systems is due to Friedrichs and Lewy, for nonsymmetric hyperbolic systems,
see Leray and Garding, and Calderon. The existence theorem using the contractive
character of 9~ is due to Schauder. For a more detailed discussion of these
approaches, see Chapter VI of Courant and Hilbert.

For the case of functions of one space variable one can employ estimates in the
maximum norm instead of the energy norm. This is done as follows: differentiate

If S-, is so chosen that

FIG. 14

for functions of the form (6.32)?
THEOREM 6.3. Let u, v be a solution in the integral sense of the conservation laws

(6.1), which satisfies the entropy condition (6.33)/0r all 17, F of the form (6.32), k large
enough. Then

is a decreasing function oft.
Sketch of proof. Integrate (6.33) over a lens-shaped region contained between

St and S2 (see Fig. 14). We obtain



Integrating (3) along thejth characteristic connecting the point (x, /) to some point
on the initial line / = 0 we obtain

Using this estimate for the first derivatives of solutions one can show that the
initial value problem (1.1), (1.3) has a solution in the time interval (7), where M(0)
is defined as

The nonexistence Theorem 6.1 shows that the restriction (7) is, roughly, necessary
unless one puts conditions on the initial values as in Theorem 6.2.

2. Conservation laws. An important class of hyperbolic systems of conservation
laws are the ones governing the flow of compressible, nonviscous non-heat
conductive fluids. There are five conserved quantities: mass, momenta and energy
per unit volume:

p = mass per unit volume = density,
M = momenta per unit volume = pV, where (u, v,w) = V is flow velocity,
E = energy per unit volume = internal + kinetic energy = pe + jpV2,

where e = interval energy per unit mass and V2 = uz + v2 + w2.
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(1.1) with respect to x; denoting ux by p we obtain a relation of the following
sort:

where Q is a quadratic function of p. Denote by l} the left eigenvector of A :

Multiplying (1) by /,- we obtain the following relation for p, = Ijp:

where q-} is some quadratic function of the vector p. The first two terms in (3) are
a directional derivative of p, in a so-called characteristic direction, given by

valid as long as

From this we deduce easily that

Denote by M(T) the maximum of all p/x, r), j = 1, • • • , n, — oo < x < oo,
0 ^ t fS T; we obtain from (4) that
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The fluxes are partly due to material being transported across the boundary
with the velocity of the flow; for the momenta there is an additional flux due to
the momentum imparted by the pressure force at the boundary, and there is an
energy flux due to the work done by the pressure force at the boundary. If there
is no heat conduction this accounts for all energy changes. For a nonviscous fluid
the pressure is a scalar p, exerted equally in all directions. The formulas for the
fluxes are:

Using this the fluxes can be expressed in terms of p, M and E.
The jump relations for shocks in gas dynamics were first stated by Riemann,

incorrectly, for he conserved entropy instead of energy. The correct relations
were found by Rankine and by Hugoniot.

Other important nonlinear hyperbolic systems of conservation laws are the
equations governing the motion of a shallow layer of water, and the equations of
hydrodynamic flows (see Courant and Hilbert, Chapter VI).

3. Single conservation laws. The starting point of the rigorous theory of single
conservation laws has been a paper by Hopf in 1950, where the explicit formula
stated in Theorem 3.1 was given in the special case of the quadratic conservation
law/(u) = \u2. The formula for arbitrary convex/is stated in Lax (1954), and
analyzed in Lax (1957).

The revealing Theorems 3.4 and 3.5 about the decrease of the Ll norm of the
difference of two solutions are due to Barbara Quinn; Ll contraction also plays
a role in the work of Oleinik (1957). Condition (3.38) is due to Oleinik (1959);
she showed that solutions satisfying (3.38) are uniquely determined by their
initial data, and Kalashnikov proved that solutions of (3.39) converge as A -* 0
to a solution which satisfies (3.38).

There is a parallel theory of single conservation laws in n space variables.
Existence theorems are contained in Conway and Smoller, Volpert, Krushkov
(1969), and Kotlow. A uniqueness theorem for piecewise continuous solutions
has been given by Doughs and by Quinn; a more general uniqueness theorem
has been given by Krushkov.

4. The decay of solutions. In his 1950 paper Hopf studied the large time behavior
of solutions of quadratic conservation laws; the extension to any convex p is given
in Lax (1957). The more refined Theorem 4.1, and Theorem 4.2 about the two and

Internal energy e, pressure p and density p are related by an equation of state:

mass flux

momentum flux

energy flux



Conley and Smoller have studied viscous profiles for strong shocks.
The main tool in Glimm's existence theorem, beside the difference scheme, is a

functional which measures the potential interaction contained in the Cauchy
data along any space-like curve. Glimm shows that this functional decreases
with time.

The notion of entropy discussed here has been proposed by Lax (1971), and
Krushkov (1970). The theory of the symmetric case is due to Godunov and was
applied by him to the compressible flow equations.

6. Hyperbolic systems of two conservation laws. The nonexistence Theorem 6.1
and Theorem 6.2 are from Lax (1964); another version has been given by Zabusky
(1962).

Johnson and Smoller have shown that under assumption (6.18) the Riemann
initial value problem can be solved uniquely for two arbitrary initial states, not
necessarily close. They have shown how to solve the initial value problem for such
systems under a monotonicity assumption for the initial values. Nishida has
shown that for the system

the initial value problem can be solved for arbitrary initial values u(x),y0(x),
u0 ^ 0. Nishida's work has been extended by Bakhvalov, DiPerna, Greenberg
and Nishida and Smoller.

where v is independent of A and satisfies the ordinary differential equation

with artificial viscous term. By plane wave we mean a solution of the form
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only conserved quantities is given in Lax (1970). The law of decrease of increasing
variation, and the method for proving it is taken from Glimm and Lax (see also
Lax (1972)). For the nonconvex case, see Dafermos (1972).

5. Hyperbolic systems of conservation laws. The shock condition (5.5) and
Theorems 5.1, 5.2, 5.3, 5.4 are given in Lax (1957). In case the /cth field is linearly
degenerate, i.e., grad /lfc • rk = 0, there exist discontinuous solutions where the
discontinuity is a ^-characteristic with respect to either side. Such discontinuities
are called contact discontinuities. It can be shown that solutions with contact
discontinuities only are the limits of continuous solutions.

Foy has shown that if u, and ur can be connected by a weak shock, then they
can be connected by a viscous profile, i.e., a plane wave solution of the equation
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The Riemann initial value problem in gas dynamics for a broad class of equations
of state has been studied by Wendroff.

Theorem 6.2 is due to Glimm and Lax. Further uniqueness theorems, in the
absence of rarefaction waves have been given by Rozhdestvenskii and by Hurd.
The construction of the entropy function (6.24) is carried out in greater detail in
Lax (1971).

7. Difference schemes. No set of lectures on hyperbolic conservation laws
should end without mention of the various effective difference schemes for comput-
ing solutions of conservation laws. These are used to compute solutions of specific
initial value problems which come up in scientific and technological problems;
problems involving two space dimensions can be handled as well. In addition to
providing numerical answers to specific questions, one hopes that numerical
calculations will reveal patterns which play a role in the theory to be developed
about solutions of these equations.

If it were possible to prove rigorously that solutions of finite difference equations
converge, this would provide a proof of the existence of solutions with arbitrarily
prescribed data. So far this has been accomplished only for single conservation
laws, and for a very crude difference scheme proposed by Lax (1954):

Here u"k abbreviates an approximation to u at t = nAr, x = /cAx, and/2 abbreviates
/(u£). The convergence of this scheme for a special case was verified by Lax (1957);
convergence for any convex / was proved by Vvedenskaya. Convergence for any
number of space variables was shown by Conway and Smoller, and also by
Kotlow.

The approximation (8) is in conservation form: that is, if we think of un
k as an

approximation to the average value of u over the cell [(k — |)Ax, (k + |)Ax] at time
t — nAf, (8) is of the generic form

i.e., where the average value of u in the /cth cell at time t = (n + l)Af differs from
the average at time «Ar by the average of the amount that has entered and left
at the endpoints during the time elapsed. The conservation character of the
approximate equation (9) is expressed by the fact that the amount that enters the
kth cell during the time interval {«Af, (n + l)Af} through the left endpoint is
exactly equal to the amount which leaves the (k — l)st cell through its right
endpoint during the same time interval.

In (8),/k+1/2 was taken to be
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this is a rather poor approximation to the average flux at k + { during {n, n + 1},
since the flux instead of being an average is evaluated at the earliest time n. In
addition, for Af small, the presence of a rather large amount of artificial viscosity
proportional to (Ax)2MJCX/Af causes additional errors. This second term has to be
included to stabilize (8); to ensure stability one has to impose in addition the
CFL condition (see Courant, Friedrichs and Lewy):

A further interesting modification which has been introduced by R. W.
MacCormack has been especially efficient in the case of several space variables.

Recently, still more accurate schemes have been devised by Rusanov and by
Burstein and Mirin.

Another type of difference scheme has been introduced by Godunov; his
starting point is the same as in Glimm's scheme, but the approximate average
value at time (n + l)Af over the fcth cell is defined to be the average of the exact
solution computed there. This average value is computed from the flux relation,
i.e., (9) is used, with/k+1/2 taken as the exact value of/at the interface between the
kth and (k + l)st cell.

Calculations performed with the methods described above produce approximate
solutions in which a shock is spread over a finite number—usually two to four—of

where

Since this formula centers the flux properly at time t = (n + |)A, it is more accurate
than (8); it can be shown that this formula is stable if the CFL condition (11) is
satisfied.

The following modification of (12), proposed by Richtmyer (see Richtmyer
and Morton), turns out to be more practical:

set in (9)

and the formulas

A more accurate choice of/k+1 /2 has been proposed by Lax and Wendroff
(1960), (1964). Starting with the Taylor series
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meshpoints. This is in sharp contrast to numerical solutions or linear equations,
where discontinuities are spread over regions which are proportional to some
power of the number of time steps taken.

A different computing method, called particle-in-cell, has been developed by
Harlow. This method is particularly effective in several space dimensions.

A study of the formation of steady state profiles for solutions of difference
equations was begun by Jennings (1973).
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