nach "The Mathematics of Infectious Diseases"
von Herbert W. Hethcote
SIAM Review, Vol. 42, No. 4. (Dec., 2000), pp. 599-653.
http://links.jstor.org/sici?sici=0036-1445%28200012%2942%3A4%3C599%3ATMOID%3E2.0.CO%3B2-Q
Hier liegt Material, das dabei helfen soll, Influenza mit Corona zu vergleichen.
Zusammenfassung
Mit dem SEIR- und dem SIR-Modell werde ich in (Teil 1) zeigen,
abhŠngt (Abb. 4 a - d).
Im Link hinter Abbildung 4e interpretiere ich den deutschen COVID-19-Verlauf im Jahr 2020 mit dem SIR-Modell. Dabei passe ich die Modellparameter so an, dass Teile des festgestellten Verlaufs vom SIR-Modell dargestellt werden.
In den Abbildungen 5 vom Teil 2 fŸhre ich als Erweiterung des SEIR-Modells das Superspreading-Modell vor. Es zeigt, wie die Corona-Pandemie mit Testen, Kontaktnachverfolgung und Isolation der infektišsen Personen (TTI) eingedŠmmt werden kann. Die Arbeitsgruppe um Viola Priesemann in Gšttingen gibt quantitative Hinweise, wie stark die infektišsen Kontakte beschrŠnkt werden mŸssen, um die Pandemie soweit zurŸckzufahren, dass sie nicht wieder von selbst aufflammt.
Im Teil 3 (Beobachteter Pandemieverlauf) findet man in Abbildung 6 und 7a zum Vergleich der Modellvorstellungen mit der Wirklichkeit den Verlauf des 7-Tage-Mittels der tŠglichen beobachteten (PCR-positiven) Fallzahlen dargestellt. Wie in Abbildungen 1 und 4 habe die linear-logarithmische Darstellung gewŠhlt, weil man darin die Halbwertszeiten T in verschiedenen Stadien t0 der Pandemie besser erkennen kann. Sie zeigen sich in den Steigungen der geraden Abschnitte der Kurven. Aus den Halbwertszeiten mšchte ich Aussagen Ÿber die Effizienz des Lockdowns machen. Verringert sich die Steigung (vergrš§ert sich T), dann haben die Menschen ihre KontaktbeschrŠnkungen (social distancing) verstŠrkt, entweder absichtlich oder unabsichtlich, letzteres z.B. durch die VerŠnderung der Jahreszeit bedingt.
Abbildungen 7a bis 7c zeigen den Vergleich Deutschland - Schweden, und wenn man auf die Abbildungen klickt, sieht man den Vergleich zu allen EU-LŠndern in einem Video.
Mit Hilfe des aus Teil 2 und 3 gewonnenen qualitativen VerstŠndnisses vom SIR Superspreading-Modell kann ich in Teil 4 Alexander Kekulés Kritik an den vergangenen und laufenden Corona-Ma§nahmen der Politik einordnen.
Teil 1: Das SEIR- und das SIR-Modellwie von Hethcote beschrieben
x λ, δ und γ sind Konstanten |
N = S + E + I + R = zeitlich konstant |
1 = s(x) + e(x) + i(x) + r(x) |
x = ein Ma§ fŸr die Weitergabe der Infektion, d.h.
N = Gesamtzahl der Menschen in der betrachteten, im Wesentlichen nach au§en abgeschlossenen (isolierten) Gruppe (population)
S(x), s(x) = Anzahl bzw. Bevšlkerungsanteil (S(x)/N) der noch nicht infizierten Menschen (the susceptibles)
E(x), e(x) = Anzahl bzw. Bevšlkerungsanteil (E(x)/N) der angesteckten Menschen in der Latenzzeit, d.h. bevor sie Symptome haben und ansteckend wirken (the exposeds)
I(x), I(x) = Anzahl bzw. Bevšlkerungsanteil (I(x)/N) der Menschen, die ansteckend wirken (the infectious)
R(x), r(x) = Anzahl bzw. Bevšlkerungsanteil (R(x)/N) der gesundeten (recovered) oder gestorbenen Menschen
λ = Kontaktrate, mit der ein einzelner Mensch die Krankheit weitergibt (Ansteckungsrate, Infektionsrate)
γ = pro-Kopf "Genesungs"rate
Die Ansteckung wŠchst und fŠllt mit dem Bruchteil i = I/N der ansteckenden Menschen (I/N = i steht in der Differentialgleichung fŸr S), und damit ist das System nichtlinear.
Verwendete Parameter
Abgeleitete Parameter
Typisch fŸr das SEIR-Modell ist die "Herd Immunity Threshold" (HIT = 1 / σ): Wenn s(t) den Wert HIT unterschreitet, klingt die Pandemie ab, sie hat ihre SŠttigungsgrenze erreicht. Von diesem Punkt an fŠllt der Bruchteil der infektišsen Menschen i(t). In Abbildungen 1 bis Abbildungen 3 wird die HIT abhŠngig von der Basisreproduktionszahl R0 zwischen 3 und 7 Tagen erreicht. Das ist wesentlich frŸher als bei der COVID-19-Pandemie).
Abb. 2a: Am Lockdown bei Zeit 1.5 Tage (senkrechte Linie) Šndert sich σ (= R0) von 4.0 nach 3.2 (entspr. x λ von 1.0 / d nach 0.8 / d). Die punktierten Kurven stellen die um den Faktor 10 vergrš§erten entsprechenden halbtŠglichen Neuinfektionen nF(t) dar:
.
Die im Bereich 0 bis 6 Tage hšheren Kurven fŸr e(t), i(t), r(t) und nF(t) gehšren zu σ = 4, die entsprechenden niedrigeren Kurven gehšren zu σ = 3.2. Die Zuordnung von σ zu den Kurven s(t) ist umgekehrt.
Bei σ = R0 = 3.2 ist das Maximum der tŠglich neu infizierten Personen
Beachten: im Gegensatz zu Abbildung 1 ist die Ordinate hier linear geeicht. |
Abb. 2b (literatur/priesemann/priesemann_2020.png): Comparison of the daily case numbers per one million inhabitants of exemplary countries as illustration of the range of possible case numbers developments. Note how both the peak height as well as peak width of some countries are considerably larger than for Germany, providing evidence against saturation effects ("herd immunity") in Germany (Data until June 3, 2020)
Quelle: Fig. 7 of Dehning, J et al., Model-based and model-free characterization of epidemic outbreaks, Sept. 18, 2020.
|
Abb. 3a: HerdenimmunitŠt im SEIR-Modell. HerdenimmunitŠt (HIT, Punkte bei s(t) = γ / (x λ)) bei einer Basisreproduktionszahl R0 ist erreicht, wenn die entsprechende Kurve nach unten abbiegt. Lockdowns derselben StŠrken und zur selben Zeit wie in Abbildungen 1 und 2. Statt des zeitlichen Verlaufs (Abbildungenen 1 und 2) ist hier i(t) gegen s(t) aufgetragen. Die Pfeile zeigen in Richtung ansteigender Zeit t. |
Abb. 3b: HerdenimmunitŠt im SIR-Modell. HerdenimmunitŠt (HIT, Punkte bei s(t) = γ / (x λ)) bei einer Basisreproduktionszahl R0 ist erreicht, wenn die entsprechende Kurve nach unten abbiegt. Lockdowns derselben StŠrken und zur selben Zeit wie in Abbildungen 1 und 2. Statt des zeitlichen Verlaufs (Abbildungen 1 und 2) ist hier i(t) gegen s(t) aufgetragen. Die Pfeile zeigen in Richtung ansteigender Zeit t. |
Abb. 4c: Einfluss der Kontaktzahl σ = R0 = γ / xλ auf den Pandemieverlauf. Die Zahlen an den Kurven geben σ an.
Die Kurven stellen die Paare s(t) und i(t) als Funktion der Zeit t dar. Alle Kurvenpaare starten bei ihrer Anfangsbedingung s(t=1) = 0.95, i(t=1) = 0.05. Das Kurvenpaar zu σ = 3.2 ist identisch mit dem Kurvenpaar zum anfŠnglichen Bruchteil i(t=1) = 0.05 in Abbildung 4a.
Je hšher die Kontaktzahl σ ist, desto frŸher und hšher liegt das Maximum von i(t), an dem die Bevškerung ihre HerdenimmunitŠt erreicht (HerdenimmunitŠt tritt beim Maximum von i(t) ein).
Auf Abbildung klicken, um in einem Videoclip die 5 Kurvenpaare {s(t), i(t)} einzeln zu sehen.
|
Abb. 4d: Pandemieverlauf und Parameter wie in Abbildung 4c, jetzt aber im Phasenraum veranschaulicht: Die Kurven stellen i(t) als Funktion von s(t) dar. Die Zahlen an den Kurven geben σ an. Jede Kurve startet rechts bei ihrer Anfangsbedingung s(t=1) = 0.95, i(t=1) = 0.05. Das Kurvenpaar zu σ = 3.2 ist identisch mit dem Kurvenpaar zum anfŠnglichen Bruchteil i(t=1) = 0.05 in Abbildung 4b.
Je hšher die Kontaktzahl σ ist, desto stŠrker wird die Bevškerung infiziert, bis ihre HerdenimmunitŠt eintritt (HerdenimmunitŠt tritt beim Maximum von i(t) ein).
Auf Abbildung klicken, um in einem Videoclip jede Kurve einzeln zu sehen. |
Abb. 4e. Dynamik der COVID-19-Pandemie in Deutschland zu ausgewŠhlten Zeitpunkten. zum Vergrš§ern auf Bild klicken |
Teil 2: SEIR Superspreading-Modelle von G. Gomes et al. und V. Priesemann et al.x λ, δ und γ folgen kontinuierlichen Verteilungen |
FŸr das SEIR- oder SIR-Modell mit konstantem x ist die lawinenartige Pandemieausbreitung charakteristisch (gerade KurvenstŸcke in Abbildung 1 bis zur HIT). Die Abbildung 7 von Dehning et al. zeigt, dass die Rate x λ (die den exponentiellen Anstieg der Kurven mitbestimmt) von Gesellschaft zu Gesellschaft variiert.
†berdies besteht die Bevšlkerung eines Landes (in guter NŠherung) aus Subpopulationen mit verschiedenen x λs, die nur schwachen infektišsen Kontakt miteinander haben. Die Pandemieentwicklung ist also in guter NŠherung eine †berlagerung der Kurven zu verschiedenen x λs in den Abbildungen 3. Die HIT dieser †berlagerung liegt niedriger als die HIT des Systems mit dem grš§ten x λ und kommt so der beobachteten Pandemieentwicklung nŠher. Darauf baut das SEIR- oder SIR-Superspreading-Modell auf.
Diesen Teil kann ich nicht modellieren. Ich hoffe, dass mein im Folgenden beschriebenes qualititatives VerstŠndnis zutrifft.
Wenn x nicht einfach eine feste Konstante ist, sondern einer (Normal-, Lognormal- oder Gamma-) Verteilung folgt, beschreibt das SEIR-Modell einen neuen Infektionsausbreitungsvorgang, das "Superspreading": Die Infektion wird nicht gleicherma§en von allen Infektišsen weitergetragen, sondern von nur wenigen. Die restlichen Infektionsketten enden rasch. Das gibt der PandemiebekŠmpfung die Chance, solche Superspreading-VorgŠnge zu lokalisieren und durch gezielte Kontaktbegrenzungen einzudŠmmen (test-trace-and-isolate, TTI).
"TTI-Ma§nahmen liefern einen wichtigen Beitrag zur Pandemiekontrolle, aber allein reichen sie typischerweise nicht aus. Ihr Erfolg hŠngt stark von ihrer Umsetzung ab:
Im Rahmen unserer informierten Festlegung der [Fit-]Parameter zeigt unser [Superspreading-]Modell, dass Reduktion der infektišsen Kontakte und TTI die Pandemie nur bis zu einer Basisreproduktionszahl R0 = 3.3 eindŠmmen kšnnen, wenn die [infektišsen] Kontakte um etwa 40% reduziert werden." (Contreras et al. 2020, Exzerpt)
mu = 1, beta = 1 |
Figure 3 von Gomes et al.: Herd immunity threshold with various distributions q(x) of susceptibility x or exposure x to infection (connectivity). Curves generated with the model (Equation 1) with gamma distributed susceptibility (black) or connectivity (gray) q(x) assuming R0 = 3: (solid) herd immunity threshold (HIT); (dashed) final size of uncontrolled epidemic.
|
Abb. 5a: Gamma-Verteilung von x. Beachten: Der hier verwendete Parameter γ ist nicht zu verwechseln mit dem γ des SEIR-Modells, der †bergangsrate vom Kompartment I zum Kompartment R (oben). |
Abb. 5b: Das charakteristische Verhalten des SEIR-Modells bei kontinuierlich verteiltem x (Abb. 5a): HerdenimmunitŠt wird umso frŸher erreicht, je enger die Verteilung von x ist (je grš§er der Coefficient of Variation CV ist). Bei enger Verteilung q(x) (gro§em CV) bleibt ein betrŠchtlicher Teil der Bevšlkerung von der Pandemie verschont, weil die Infektion nicht explosionsartig um sich greift, sondern sich auf eng begrenzte Bevšlkerungsbereiche beschrŠnkt. |
Interpretation
Der mit einem Superspreading-Modell beschriebene Ablauf der Pandemie gleicht dem In-Brand-Geraten und Brennen eines Packens von PapierbŸndeln (Gesellschaftsgruppen, innerhalb derer Superspreading ablŠuft, deren Au§enkontakte aber pandemisch kaum infektišs sind), das einem Funkenflug (der Infektion) ausgesetzt ist.
Most frequently we were asked if and in what sense our results have a causal interpretation. As we will explain [in this paper] below, our approach selects the most plausible of multiple causal explanations of the observed data, but does not establish strict interventional causality."
Quelle: Dehning, J. et al., "Model-based and model-free characterization of epidemic outbreaks", Sept. 16, 2020
Teil 3: Beobachteter Pandemieverlauf |
Abb. 6: Corona-Statistik nach worldometers.info:
Die senkrechten Linien haben einen 5-Tage-Abstand. Die Ordinate ist wie in den beiden folgenden Abbildungen der 10er Logarithmus der Fallzahlen.
Ich habe nicht verstanden, wie die aktiven FŠlle berechnet werden. worldometers.info verweist auf SchŠtzungen des Berliner Tagesspiegels.
Abb. 7a: Corona-Statistik der 7-Tage-Inzidenz (= Anzahl der FŠlle innerhalb von 7 Tagen pro 100 000 Personen) nach Tagesspiegel: Vergleich Deutschland - Schweden. Ordinate ist logarithmisch geeicht.
Auf Graphik klicken, um Vergleich mit allen EU-LŠndern zu sehen.
Linear-logarithmische Darstellung der Fallzahlen.
In linear-logarithmischer Darstellung sind
teilweise aus GeradenstŸcken zusammengesetzte Kurven. Die Geraden zu (a) und (b) verlaufen parallel zueinander. Der zeitlichen Anstieg der Geraden ist ein Abbild des Differentialgleichungssystems (im einfachsten Fall dem obigen Modell, aber auch demdetaillierteren Modell von Viola Priesemann et al., das social distancing und infectivity explizit trennt). Aus dem zeitlichen Anstieg der Kurven mšchte ich auf die tatsŠchlich verwirklichten social distancing Ma§nahmen schlie§en.
Es gibt in Abbildung 6a Zeitintervalle, in denen die KurvenstŸcke von vielen LŠndern weitgehend parallel verlaufen, also die Kombinationen infectivity - social distancing von Land zu Land kaum variiert. Die verschiedenen Hšhen, in denen die KurvenstŸcke liegen, spiegeln in Abbildung 6 verschiedene Populationsgrš§e und Infektionsdruck, in Abbildung 7a allein den verschiedenen Infektionsdruck wider. mehr dazu.
Abb. 7b: Corona-Statistik der tŠglich neuen TodesfŠlle nach Tagesspiegel: Vergleich Deutschland - Schweden. Ordinate ist logarithmisch geeicht.
Auf Graphik clicken, um Vergleich mit allen EU-LŠndern zu sehen.
Abb. 7c: Corona-Statistik der kumulativen TodesfŠlle nach Tagesspiegel: Vergleich Deutschland - Schweden. Ordinate ist linear geeicht.
Auf Graphik clicken, um Vergleich mit allen EU-LŠndern zu sehen.
Die Anstiege und AbfŠlle spiegeln wider, wie sich die Bevšlkerung an die Shutdown-Auflagen hŠlt: im Herbst/Winter 2020/21 hŠlt sie sich jahreszeitlich bedingt weniger daran als im FrŸhjahr 2020, wo die Pandemie in die warme Jahreszeit hinein lief, in der die aerogene †bertragung abnahm.
"Ich glaube, wir mŸssen lernen, dass der offene wissenschaftliche Diskurs wichtig ist und dass man gro§e Gremien von Wissenschaftlern braucht, die miteinander diskutieren. Wenn man die immer nur einzeln fragt, ist das schlecht. Man braucht ein Gremium, denn das Ergebnis von solchen Gremien ist meistens besser. Und vor allem, wenn die Politiker dabeisitzen und sich das anhšren, verstehen die ja auch ein bisschen die Argumente besser. Ich glaube, das hŠtten wir am Anfang unbedingt machen mŸssen. Das steht Ÿbrigens in den PandemieplŠnen, dass man dafŸr eine Kommission, eine Fachkommission grŸnden soll. Das ist nicht gemacht worden und wie viele Punkte in der Schublade geblieben."
Teil 4: Kritik an den Corona-Ma§nahmen - Alexander KekulŽ und Lisa FederleDie Abbildungen habe ich eingefŸgt. Alexander Kekulé hat keinen Bezug darauf genommen. |
Kekules Corona-Kompass Transkripts #83 - #252
|
[Das] sind die Haupttreiber [der Infektion]:
|
Als Ausbruch wird ... eine HŠufung von mindestens zwei Infektionen bezeichnet, die epidemiologisch miteinander in Verbindung stehen. Abbildung 1.1. zeigt die Gesamtzahl an FŠllen dieser AusbrŸche zum jeweiligen Tag der ersten Meldung, der den Beginn des Ausbruchs definiert. Das hei§t, die Kurven geben jeweils alle FŠlle in einem Ausbruch zu Beginn des Ausbruchs wieder.
Quelle: Abbildung 1.1 in Bericht 8, 5.2.2021, CODAG, LMU MŸnchen (im Cache)
siehe auch AufschlŸsselung nach Altersgruppen und BundeslŠndern in Abbildung 4 in Bericht 5, 22.12.2020, CODAG, LMU MŸnchen (im Cache) |
"Auch wenn man die meisten Infektionen nicht mehr nachvollziehen kann, wissen wir, das ist im Moment das Problem. Da widerspricht niemand. Deshalb hŠtte ich mir gewŸnscht, dass man dort stŠrker eingreift. Das hat man aber nicht gemacht, stattdessen alle bedacht.
Das ist so Šhnlich, als wenn Sie sagen, ich will ein Parkproblem in der Innenstadt lšsen. Es gibt zu viele Autos.
Ich hŠtte mir gewŸnscht, dass man die Falschparker abschleppt und die Strafzettel konsequenter verteilt und dann mal sieht, ob das nicht vielleicht schon reicht, um das Problem zu beheben."
Quelle: KekulŽs Corona Kompass #115 , audio, im Cache)
mehr dazu von Alexander Kekulé
"Teilweise gibt es schon Regionen in Deutschland, die in einem komfortablen Bereich angekommen sind. Dann sagt man, okay, jetzt šffnen wir mal die Friseure. Ich bin nicht dafŸr, dass man einfach irgendwie aufmacht. Weil alle LŠnder, die in der jetzigen Situation oder in Šhnlichen Situationen gešffnet haben, das dann damit bezahlen mussten, dass die Fallzahlen wieder dramatisch angestiegen sind. Gerade so um Weihnachten rum hatte man in Irland, England und anderen Teilen der Welt auch diese Probleme. Dieser Ausbruch in Portugal war ja im Grunde genommen auch die Konsequenz einer …ffnung.
Das sind immer unkontrollierte …ffnungen gewesen. Es hat keinen Sinn, "Schleuse zu, Schleuse auf" zu denken. Sondern man muss Ÿberlegen, wie kann man diesen Lockdown, der immer irgendwie wirken muss, durch selektivere, intelligentere Ma§nahmen ersetzen. Das muss man natŸrlich auch vorbereiten. Es tut mir leid, das zu sagen, weil wir schon fast ein ganzes Jahr Ÿber dieses Thema sprechen in diesem Podcast. Ich sehe da noch nicht so richtig eine Strategie. Wie kommt man Schritt fŸr Schritt raus?
VorschlŠge fŸr kontrollierte …ffnungen:
Quelle: Kekulés Corona Kompass #148 Ê |
Quelle: Bericht 1, 30.10.2020, CODAG, LMU MŸnchen (im Cache) |
Camillo Schumann
Wenn Sie diese Zahlen hšren, was sagen Sie dazu?
Quelle: KekulŽs Corona-Kompass #124, audio |
Die EinschrŠnkungen des šffentlichen Lebens haben dazu beigetragen, dass die Anzahl der Neuinfektionen rŸcklŠufig ist, allerdings nicht fŸr die €ltesten. Abbildung 6 zeigt die Anzahl der Neuinfektionen pro 100.000 Einwohner in unterschiedlichen Altersgruppen. Man erkennt fŸr alle Altersgruppen einen steilen Anstieg bis zur Kalenderwoche 45. Danach flacht sich dieser Anstieg fŸr fast alle Altersgruppen ab und die Infektionszahlen reduzieren sich. Insbesondere fŸr die Altersgruppe der 20 -24-JŠhrigen zeigt sich ein RŸckgang. Dies zeigt empirisch, dass die ergriffenen Ma§nahmen das Infektionsgeschehen in Deutschland teilweise eindŠmmen konnten. Dies gilt allerdings nicht fŸr die †ber 85-JŠhrigen. Hier ist der Anstieg der Infizierten ungebrochen und steigt auch weiterhin an; besonders steil bei den †ber 90-JŠhrigen.
Quelle: Abbildung 5 in Bericht Nr. 4, 11.12.2020, CODAG, LMU MŸnchen(im Cache) |
Wie wir COVID-19 unter Kontrolle bekommen (BMI-Link)
Paul Cullen, Brigitte Kšnig, Jens Schwachtje, Henrieke Stahl, Henrik Ullrich, Berliner Zeitung, 15.01.2024
(im Cache)
Konsensuelles Ð mit Sprengkraft fŸr die Diskussion
(2) Es besteht Konsens, dass das Spikeprotein Ð egal ob im Virus oder als Ergebnis der
modRNA-Injektion gebildet Ð schŠdlich sein kann. Es kann fŸr schwere Covid-VerlŠufe sowie
das post acute covid syndrome (PACS, ãlong-CovidÒ) oder aber auch das post acute covid
vaccination syndrome (PACVS, ãpost-VaxÒ) Ð zusammen auch mit anderen Faktoren Ð
verantwortlich sein.
In Studien wurden ZusammenhŠnge zwischen dem modRNA-Wirkprinzip und dem durch die
modRNA gebildeten Spike-Protein mit bestimmten Erkrankungen gefunden, darunter
HerzmuskelentzŸndungen, Gerinnungsstšrungen und das myalgische Enzephalitis/chronische
MŸdigkeitssyndrom (ME/CSF). Die Frage, welches Gewicht dem Spike-Protein in Relation zu
den anderen Proteinen des Coronavirus fŸr seine PathogenitŠt zukommt ist weiterhin Gegenstand
der wissenschaftlichen Diskussion.
(3) Es gilt als gesichert, dass nach Impfung Spikeproteine deutlich lŠnger im Kšrper gebildet werden als anfangs gedacht bzw. geplant war. So wurden sie in Lymphknoten 60 Tage und in anderen Geweben vier bis sechs Monate nach Impfung nachgewiesen. Auch besteht Konsens, dass diese Persistenz das Risiko fŸr Nebenwirkungen erhšht.
(4) Ebenso ist wissenschaftlich gesichert, dass der Impf-Wirkstoff nicht, wie immer noch gern in
Medien kommuniziert wird, an der Injektionsstelle im Arm verbleibt, sondern sich breit verteilt,
die Blut-Hirn- sowie Plazenta-Schranke Ÿberwindet und in der Muttermilch erscheint. Zellen
verschiedener Gewebe exprimieren das Spike-Protein, so dass diese zum Angriffspunkt fŸr das
Immunsystem werden kšnnen.
Einigkeit besteht ferner darŸber, dass die Lipidnanopartikel, in denen die modRNA verpackt
wird, selbst schŠdlich wirken kšnnen, etwa EntzŸndungen auslšsen.
(5) Dass eine Studie mittels ãcomputergestŸtzter VerfahrenÒ eine mšgliche Interaktion des Spikes mit einem Krebs-assoziierten Protein gezeigt hat, ist unstrittig. Gegen die Behauptungen in Harmsens Artikel, es gebe keine Hinweise auf einen Zusammenhang von Krebs und Covid-19- Impfung und es sei ãunplausibelÒ, dass Spike Krebs begŸnstigen oder auslšsen kšnne, sprechen jedoch sowohl statistische Befunde als auch erste pathophysiologische und andere Studien.
(6) Bei der Massenherstellung der modRNA-Impfstoffe mittels Escherichia coli-Bakterien kommt es trotz entsprechender Reinigungsma§nahmen zu einer Kontamination mit DNA- Fragmenten, die in die Lipidnanopartikel eingeschlossen und somit in das Zellinnere transportiert werden kšnnen. Unter bestimmten Bedingungen kšnnen diese DNA-Reste bis in den Zellkern vordringen. Welche tatsŠchlichen Auswirkungen diese Verunreinigungen in der Zelle und gegebenenfalls im Zellkern haben, ist unbekannt. Jedenfalls aber ist hier ein Potenzial fŸr mšgliche Krebsursachen vorhanden.
In seinem Podcast hat Professor KekulŽ zu diesem Sachverhalt gefragt, weshalb Hersteller und Behšrden ãnicht mal mit klaren Statements reagierenÒ. Das hat das Paul-Ehrlich-Institut am 22. Dezember 2023 mit einem Informationsschreiben getan. Das Papier bestŠtigt die DNA- Verunreinigung, behauptet aber, diese sei unschŠdlich, weil die Menge gering und die DNA- Fragmente kurz seien. Daten, die diese Behauptung gesicherter UnschŠdlichkeit im Fall der Covid-19-modRNA-Impfstoffe mit ihrer oben geschilderten neuartigen Spezifik stŸtzen wŸrden, existieren nach unserem Wissen nicht.
Auch wird in diesem Schreiben au§er Acht gelassen, dass die gefundene Menge an DNA- Verunreinigung stark von der Messmethode abhŠngt. Die qPCR-Technik, die wir auch von der SARS-CoV2-Diagnostik kennen, findet nur einzelne Gensequenzen, die man vorher definiert hat. Alle anderen Sequenzen werden unabhŠngig von ihrer Menge einfach Ÿbersehen. Daher ist die qPCR zur Gesamt-DNA-Bestimmung ungeeignet, wird aber von den Herstellern Ð in †bereinstimmung mit der EMA Ð dennoch hierfŸr verwendet.
Es fragt sich, weshalb nicht Methoden genutzt werden, die sich zur Bestimmung des DNA- Gesamtgehalts eignen, zumal den Herstellern die Problematik einer Untererfassung der DNA bewusst ist. So legt ein Patent von Moderna (US 10 ,077 ,439 B2, Spalte 19) zur ãEntfernung von DNA im mRNA-ProduktionsprozessÒ dieses Problem explizit dar: ãDie quantitative PCR wird hŠufig zur Messung der Rest-DNA eingesetzt, aber sie erfasst nur die DNA-MolekŸle, die beide qPCR-Primer enthalten, und misst daher nicht alle anderen kleineren DNA-MolekŸle, die teilweise verdaut sind.Ò Im Patent wird deshalb zur Messung von Rest-DNA eine hochempfindliche physikalische Messmethode (FlŸssigchromatographie-Tandem- Massenspektrometrie) empfohlen. FŸr die Covid-19-modRNA-Impfstoffe wird jedoch diese Empfehlung nicht berŸcksichtigt.
Wir dŸrfen nicht vergessen, dass es sich bei den modRNA-Produkten der Sache nach um Gentherapeutika handelt, die nur mittels einer âjuristischen FiktionÔ aus dieser Kategorie ausgenommen und daher bei ihrer Zulassung weder auf krebserregende noch auf genotoxische Wirkungen hin untersucht wurden.
Die LŠnge dieser Liste von †bereinstimmungen in Bezug auf problematische Aspekte der Spikeproteine und der modRNA-Covid-19-Impfstoffe, auch wenn ihre EinschŠtzung im Detail divergiert, untermauert den Bedarf zur Vertiefung der Forschung und zu einer Ausweitung der šffentlichen Debatte zur Sicherheit dieser Impfstoffe. Es fragt sich, weshalb in den Leitmedien zu diesen Fragen nicht schon frŸher eine Diskussion begonnen wurde.
Dissens im Diskurs
Wie in einem wissenschaftlichen Diskurs zu erwarten, waren die von Herrn Harmsen konsultierten Kollegen nicht mit all unseren Schlussfolgerungen einverstanden:
(1) Einige Kollegen teilen unsere Hypothese nicht, dass durch die Injektion das Spike gefŠhrlicher als nach der Infektion werden kšnne. Sie bezweifeln, dass sich das Spike nach einer Impfung im Kšrper mehr anreichert als nach einer Infektion.
Richtig ist, dass bisher unklar ist, wieviel Spike typischerweise nach Impfung im Kšrper gebildet wird, und inwieweit diese Menge von der Impfdosis und von der geimpften Person selbst abhŠngt. Auch die Viruslast schwankt erheblich je nach Schweregrad der Infektion. Dazu kommen noch die Unterschiede der Virusvarianten sowie die Mšglichkeit, dass das Spike-Protein im Viruskomplex anders wirkt, als wenn es in Reinform nach der Impfung vom Kšrper gebildet wird.
Unsere These einer erhšhten SchŠdlichkeit der Covid-19-Impfung im Vergleich zur Infektion beruht auf der Annahme, dass durch die Impfung das Spike zwangslŠufig ins Kšrperinnere gelangt bzw. dort hergestellt wird, wŠhrend das Virus hierfŸr erst verschiedene Immunschranken Ÿberwinden muss und sich nur bei verhŠltnismŠ§ig seltenen schweren KrankheitsverlŠufen in einem relevanten Ausma§ systemisch ausbreitet bzw. vermehrt.
Zu diesen Fragen besteht erheblicher Forschungsbedarf.
(2) Es wird die Ansicht vertreten, die Verwendung von N1-methyl-Pseudouridin in der Impf- modRNA sei ungefŠhrlich. Dieses Pseudouridin werde nicht wie ãnormaleÒ RNA-Bausteine wiederverwendet, sondern, wie Herr KekulŽ in seinem Podcast berichtet, nach Abbau der modRNA direkt ausgeschieden. Eine dadurch erhšhte GefŠhrdung des menschlichen Kšrpers bestehe deshalb nicht.
Die Wirkung und Verstoffwechselung der modRNA und des darin enthaltenen Pseudouridins ist aber ein hochkomplexes Thema mit vielen offenen Fragen. Zum Beispiel zeigt eine am 13. Dezember 2023 erschienene Studie in der renommierten Fachzeitschrift Nature, dass das Pseudouridin in der modRNA zu Fehlern bei der Eiwei§herstellung in unseren Zellen fŸhrt, so dass nicht nur Spike-Protein, sondern auch eine signifikante Menge an nicht gewollten und nicht charakterisierbaren Eiwei§-Nebenprodukten gebildet wird. Welche Wirkungen diese Eiwei§- Nebenprodukte haben, ist unbekannt.
(3) In seinem Artikel zitiert Herr Harmsen die Virologin Prof. Ulrike Protzer, die unter Bezugnahme auf eine Studie behauptete, das Risiko einer HerzmuskelentzŸndung bei einer Covid-19-Erkrankung sei fŸnf- bis zehnmal hšher als nach Impfung. Diese Studie (Patone et al. 2022) zeigt jedoch auch, dass bei unter-40-JŠhrigen das Risiko einer HerzmuskelentzŸndung nach der zweiten Injektion mit dem Moderna-Produkt etwa 50% hšher war als nach einer SARS- CoV-2-Infektion. Diese Studie wurde in der Zeit vor dem Auftauchen der weniger virulenten Omikron-Variante durchgefŸhrt. Solche relativierenden Faktoren, wie Alter und PathogenitŠt der Virusvariante sowie ferner auch die GeschlechtsabhŠngigkeit dieser Komplikation (vgl. Buergin et al. 2023) mŸssen berŸcksichtigt werden.
In ihrer Gebrauchsinformation berichtet Pfizer selbst von einem ãerhšhten MyokarditisrisikoÒ fŸr Kinder und Jugendliche, wŠhrend die HerzmuskelentzŸndung fŸr Erwachsene als ãsehr selteneÒ Nebenwirkung (1:10.000) kategorisiert wird. Es existieren jedoch Hinweise, dass das Risiko einer impfinduzierten HerzmuskelentzŸndung deutlich hšher ausfallen kšnnte, als bisher angenommen. In einer Studie zeigten alle Geimpfte, auch solche ohne Symptome, in der Zeit bis 180 Tage nach der Impfung bei Untersuchung mit einer empfindlichen nuklearmedizinischen Methode diskrete VerŠnderung des Stoffwechsels der Herzmuskelzellen, die auf ein hšheres Risiko fŸr spŠtere krankhafte HerzmuskelverŠnderungen hinweisen kšnnten. Zudem gibt es auch keinen Konsens darŸber, wie gro§ das Risiko nach einer ãŸberstandenenÒ HerzmuskelentzŸndung fŸr spŠtere HerzschŠden ist.
(4) Der Marburger Kardiologe Bernhard Schieffer bezweifelt laut Harmsen unsere These, dass viele ãLong-CovidÒ-FŠlle in Wahrheit Post-Vax sind, denn hierfŸr fehle die wissenschaftliche Basis. In der Forschung wird diese Frage kontrovers diskutiert. Eine aktuelle Studie kommt zu dem Ergebnis, die Impfung reduziere das Risiko fŸr Long Covid. Jedoch leidet diese Studie, wie Professor Boris Kotchoubey gezeigt hat, an einem methodischen Defizit: Sie vergleiche gewisserma§en ã€pfel mit BirnenÒ, denn sie differenziere nicht zwischen Menschen, die sich in der Zeit vor der VerfŸgbarkeit einer Covid-19-Impfung mit den frŸheren, als schwerer geltenden Virusvarianten infizierten, und Menschen, die sich wŠhrend der Impfkampagne mit milden Virusvarianten angesteckt haben.
Zur KlŠrung der relativen HŠufigkeit von Post-Covid und Post-Vax kšnnte eine Kohortenstudie beitragen, welche die unterschiedlichen Kombinationen von Infektionen, Virusvarianten und Impfungen sauber berŸcksichtigt. Der Goldstandard fŸr solche Vergleiche ist aber die klassische randomisierte prospektive Doppelblindstudie mit einer hohen Probandenzahl. In Folge der Durchimpfung der Kontrollgruppe der Pfizer-Zulassungsstudie nach nur sechs Monaten und der Durchimpfung eines gro§en Teils der Bevšlkerung ist eine solche Studie jedoch kaum mehr mšglich.
Das ist aus unserer Sicht eines der fundamentalen Probleme fŸr eine solide EinschŠtzung der Sicherheit der Impfstoffe. Denn hierfŸr fehlt genau die Datengrundlage, die bisher bei Impfstoffen mit Studien nach dem o.g. ãGoldstandardÒ erhoben wurde bzw. bisher behšrdlich vorgeschrieben erhoben werden musste. SpŠter durchgefŸhrte retrospektive Fall-Kontroll-Studien fŸhren leicht zu Fehlinterpretationen in Bezug auf die Sicherheit der Impfstoffe. Selbst wenn sie die Gesamtsterblichkeit oder die Gesamterkrankung berŸcksichtigen, kšnnen sogenannte ãconfounding factorsÒ (Stšrfaktoren) das Ergebnis verfŠlschen.
Deshalb kšnnen sie niemals prospektive randomisierte doppelblinde kontrollierte Studien ersetzen, in denen die Patienten per Zufall den Gruppen zugeteilt werden. Dies ist auch der Grund, warum die Durchimpfung der Kontrollgruppen in den Impf-Zulassungsstudien ein grober Versto§ gegen alle wissenschaftlichen Standards war. Die Hersteller beriefen sich fŸr diesen Schritt auf die Empfehlung, welche kurz zuvor die Weltgesundheitsorganisation (WHO) herausgegeben hatte. Die WHO behauptete, dass angesichts der Pandemiesituation die ethische Notwendigkeit bestehe, den Teilnehmern der Placebogruppe das Verum anzubieten. Nahezu sŠmtliche Teilnehmer der Placebogruppen nahmen das Angebot an.
Offene Fragen
Die von Michael Andrick angesto§ene Debatte, ob und in welchem Ausma§ die beobachtete †bersterblichkeit in einem Zusammenhang mit den Covid-19-Impfstoffen steht, hat die Risiken dieser Stoffe ins Licht der …ffentlichkeit gerŸckt. Sie zeigt aber auch, wie gro§ der Forschungsbedarf rund um die modRNA-Covid-19-Impfung ist. Und nicht zuletzt appelliert sie daran, die Debatte auch in den Medien sachlich, unter BerŸcksichtigung der Bandbreite der Forschung sowie auch der Reflexion ggf. methodischer Begrenzungen oder auch Defizite der Studien zu fŸhren. Argumente mŸssen frei und vorbehaltlos ausgetauscht werden kšnnen.
FŸr uns ist ein wichtiges Ergebnis dieser Debatte, dass sie einige offene Fragen zur modRNA- Impftechnologie sowie zur Rolle des Spikeproteins auch fŸr ein breiteres Publikum in den Fokus gerŸckt hat.
Folgende SchlŸsselfragen ergeben sich aus der bisher gefŸhrten Kontroverse:
(1) Welches Gewicht kommt dem Spikeprotein im Rahmen des Krankheitsverlaufes bei Covid-19 und Long Covid einerseits und andererseits bei unerwŸnschten Nebenwirkungen nach den modRNA-Injektionen - auch im Vergleich zu anderen pathogenen Faktoren und Mechanismen - zu?
(2) Warum reagieren die Menschen so unterschiedlich auf eine Infektion mit SARS-CoV-19 und auch auf eine Covid-19-Impfung? Welche Rolle spielen hierbei die Sequenzdifferenzen und die Mehrfachexposition gegenŸber verschiedenen Spikecodierungen aus verschiedenen Impfungen und Infektionen?
(3) Was ist das Ausma§ und worin liegt die gesundheitliche Bedeutung der DNA- Verunreinigung in den modRNA-Covid-19-Impfstoffen? Und spielt diese Verunreinigung bei den berichteten Unterschieden in der HŠufigkeit von Nebenwirkungen zwischen den verschiedenen Impfchargen eine Rolle?
(4) Wann erfolgen endlich Studien zur ãPharmakokinetikÒ (Verteilung, Stoffwechsel und Ausscheidung) dieser Impfstoffe? Welche Bedeutung hat die Pharmakokinetik fŸr die Behandlung von post acute covid syndrome oder post acute covid vaccinaton syndrome?
(5) Wie sehen mšgliche ErklŠrungsmodelle fŸr einen Zusammenhang zwischen Krebs bzw. auch bestimmten Krebsarten und der Covid-19-Erkrankung bzw. -Impfung aus und welche empirische Evidenz gibt es fŸr solche ZusammenhŠnge?
(6) Wie hoch ist das Risiko einer Herzmuskel- oder HerzbeutelentzŸndung bei den angepassten Impfstoffen bzw. den aktuellen Virusvarianten?
(7) Wie kann eine routinetaugliche Methode zur Differenzierung zwischen Impf-Spike und Virus-Spike entwickelt werden, die Impfung und / oder Injektion als wahrscheinliche Ursache fŸr spikeassoziierte Erkrankungen auszumachen erlaubt?
Unsere Arbeit ist motiviert durch die Ð aus unserer Sicht mittlerweile hinreichend begrŸndete - Sorge um eine deutliche UnterschŠtzung der Nebenwirkungen der modRNA-Covid-19- Impfungen. Die Nebenwirkungen kšnnen auch erst nach lŠngerer Zeit, mšglicherweise erst nach vielen Jahren auftreten Ð eine Annahme, fŸr die es mittlerweile einige wissenschaftliche Evidenz gibt.
Wir wollen eine SensibilitŠt fŸr diese Probleme erzeugen, die fachliche Diskussion anregen und diese einer breiteren …ffentlichkeit zugŠnglich machen. Wir wŸnschen, dass wir mit unseren EinschŠtzungen falsch liegen. Aber nach drei Jahren intensiver Analyse verfŸgbarer Informationen und vieler Studien zu diesen Impfstoffen sehen wir immer grš§ere Risiken sowie offene Fragen, die dringend bearbeitet und beantwortet werden mŸssen. Deshalb fŸhlen wir uns Ð als kritische und eigenstŠndige Wissenschaftler Ð verantwortlich dafŸr, unser Wissen und unsere Fragen mit der …ffentlichkeit zu teilen. Wir danken allen, die diese Diskussion mit uns fŸhren.
HŠtte es einen solchen offenen Diskurs zu jedem Zeitpunkt der Corona-Episode in den Medien gegeben, wŠren uns wohl manche Fehler der letzten Jahre erspart geblieben.
Paul Cullen, Brigitte Kšnig, Jens Schwachtje, Henrieke Stahl, Henrik Ullrich
----------- ANHANG -------------
Kritik an Robert Kennedy
Interview mit Tucker Carlson, 15.11.2021 (Transkript)
Ich habe Stichproben der Kritik an Robert Kennedy (z.B. imÊdeutschenÊundÊenglischenÊWikipedia) untersucht. Wegen der Sperrung von Kennedy's Instagram-Konto konnte ich die GŸltigkeit der mich interessierenden, extremen VorwŸrfe gegen ihn nicht verifizieren.
Vielleicht prŸfe ich die Haltbarkeit der kausalen Verbindung zwischen Impfung und Autismus als weitere Stichprobe. Problem: Dabei muss ich mich auf die Aussagen von Medizinern verlassen. Dass man sich bei Aussagen von Wissenschaftlern auf dŸnnem Eis bewegt, wissen wir aus eigener Erfahrung. Wir kennen die Scheu von Wissenschaftlern vor der †bernahme von Verantwortung.
Gesellschaft fŸr Freiheitsrechte (GFF)
1. Gutachten Ausgangssperre
https://freiheitsrechte.org/home/wp-content/uploads/2021/04/GFF-Gutachten-Ausgangssperren.pdf
2. Zur Covid-19 hat sie eine Ÿbersichtlich gegliederte juristische Analyse im Internet:
https://freiheitsrechte.org/corona-und-grundrechte/
Das Papier "Corona und Grundrechte" wird -nach GFF-Aussage- fortlaufend auf den neuesten Stand gebracht. Diese Updates sind so alt, dass sie nach meiner EinschŠtzung noch nicht die neuerdings diskutierte allgemeine Impfpflicht im Anfang des kommenden Jahrs behandeln.
UrteilÊdes Bundesverfassungsgerichts vom 30.11.2021 (im Cache)
"Wesentliche ErwŠgungen des Senats"
kann die verfassungsgerichtliche Kontrolle dabei von einer blo§en Evidenz- Ÿber eine Vertretbarkeitskontrolle bis hin zu einer intensivierten inhaltlichen Kontrolle reichen. Daran gemessen verfolgte der Gesetzgeber mit den in ¤ 28b Abs. 1 Satz 1 Nr. 1 IfSG angeordneten KontaktbeschrŠnkungen jeweils fŸr sich genommen und auch in ihrer Zusammenschau verfassungsrechtlich legitime Zwecke. Mit dem Vierten Gesetz zum Schutz der Bevšlkerung bei einer epidemischen Lage von nationaler Tragweite bezweckte der Gesetzgeber ausweislich der BegrŸndung des Gesetzentwurfs, insbesondere Leben und Gesundheit zu schŸtzen.
Die Beurteilung des Gesetzgebers, es habe bei Verabschiedung des Gesetzes eine Gefahrenlage fŸr Leben und Gesundheit sowie die Gefahr der †berlastung des Gesundheitssystems bestanden, beruhte auf tragfŠhigen tatsŠchlichen Erkenntnissen. ... Belastbare Erkenntnisse, wonach nur geringe oder keine Gefahren fŸr Leben und Gesundheit durch eine Infektion oder nur geringe oder keine Gefahren auch durch †berlastung des Gesundheitssystems vorlŠgen, waren jedoch nicht vorhanden.
4b. Die durch ¤ 28b Abs. 1 Satz 1 Nr. 1 IfSG angeordneten BeschrŠnkungen von Kontakten im privaten und im šffentlichen Raum waren im verfassungsrechtlichen Sinne geeignet, die Gesetzeszwecke zu erreichen. DafŸr genŸgt bereits die Mšglichkeit, durch die gesetzliche Regelung den Gesetzeszweck zu erreichen. Bei der Beurteilung der Eignung einer Regelung steht dem Gesetzgeber ein Spielraum zu, der sich auf die EinschŠtzung und Bewertung der tatsŠchlichen VerhŠltnisse, auf die etwa erforderliche Prognose und auf die Wahl der Mittel bezieht, um die Ziele des Gesetzes zu erreichen. Dieser Spielraum reicht nicht stets gleich weit, sondern hŠngt einzelfallbezogen etwa von den Mšglichkeiten ab, sich ein hinreichend sicheres Urteil zu bilden. Wiederum gilt zwar, dass bei schwerwiegenden Grundrechtseingriffen tatsŠchliche Unsicherheiten grundsŠtzlich nicht ohne Weiteres zulasten der GrundrechtstrŠger gehen dŸrfen. Erfolgt wie hier der Eingriff aber zum Schutz gewichtiger verfassungsrechtlicher GŸter und ist es dem Gesetzgeber angesichts der tatsŠchlichen Unsicherheiten nur begrenzt mšglich, sich ein hinreichend sicheres Bild zu machen, ist die verfassungsgerichtliche PrŸfung auf die Vertretbarkeit der gesetzgeberischen Eignungsprognose beschrŠnkt. Das schlie§t die PrŸfung ein, ob die gesetzgeberische Prognose hinreichend verlŠsslich ist.
|
Im Urteil wird nach meiner (JG) EinschŠtzung der schwachen Kopplung zwischen den Inzidenzen (Zahl der durch PCR diagnostizierten Neuinfektionen) und den SterbefŠllen ungenŸgend Rechnung getragen.Ê
Mit anderen Worten:Ê
(*) Der Schutz der durch COVD-19 lebensbedrohten Personen in Alten- und Pflegeheimen war trotz besseren Wissens unzureichend. Konkret: zu lange fehlten verlŠssliche Tests am Eingang dieser Einrichtungen, und dann wurden unzureichende Tests (nŠmlich Schnelltests anstelle von PCR-Tests) eingefŸhrt.
(*) Die Abwehr gravierender SchŠden hŠtte also auch durch andere, weniger Grundrechts-einschrŠnkende Ma§nahmen als den vom Gesetzgeber beschlossenen Ma§nahmen (Bundesnotbremse) erfolgen kšnnen.Ê
Neil M. Ferguson (Epidemiologist)
He [Neil Ferguson] said that the new coronavirus could affect up to 60% of the UK's population, in the worst-case scenario,[53] and "suggest(ed) that the impact of the unfolding epidemic may be comparable to the major influenza pandemics of the twentieth century."[45][54][55] His team's publication in mid-March of the projections that the UK could face hundreds of thousands of deaths from COVID-19 without strict social distancing measures, gained widespread media attention.[56][57] In late March, he calculated that with "strict social distancing, testing and isolation of infected cases", deaths in the UK could fall to less than 20,000.[58]
Ferguson's research has raised questions by virologist Hendrik Streeck. Ferguson is the corresponding author for a paper titled "Impact of non-pharmaceutical interventions (NPIs) to reduce COVID-19 mortality and healthcare demand", which describes itself as having "informed policymaking in the UK and other countries in recent weeks".[59] Streeck stated in reference to the paper "In the Ð really good Ð model studies by the Imperial College about the progress of the epidemic, the authors assume, for example, that 50 percent of households in which there is a case do not comply with the voluntary quarantine. Where does such an assumption come from? I think we should establish more facts."[60] The COVID-19 computer model which Ferguson authored (see CovidSim) was initially criticised as "unreliable" and "a buggy mess,"[61][62] but subsequent efforts to reproduce the results were successful.[63]
Josh Sterling
Josh Stirling: Dissecting Excess Death Data and How Insurance IndustryÕs Trillions Could Be Deployed to Help the Vaccine-Injured (im Cache)
ÒThe more doses on average you have in a region within the United States, the bigger increase in mortality that region has had in 2022 when compared to 2021,Ó said Josh Stirling, an insurance research analyst who has been dissecting alarming trends in life insurance, mortality and disability data over the past couple of years.
Looking at CDC data, Stirling ranked the number of doses administered across regions in the U.S. and compared that to the increase or decrease in mortality in 2022 compared to 2021. He said what he found was a clear regression line to the right. In other words, more doses correlated to greater increases in mortality.
He has also conducted extensive analysis of U.K. data which show greater mortality rates among the vaccinated than the unvaccinated in 2022, as well as German hospital data showing alarming trends in immune-related issues and female fertility.
According to Sterling, COVID-19 vaccine manufacturers have turned their backs on the vaccine-injured Ñand face essentially no financial consequences for doing so. But there is one multi-trillion industry that actually does have a big financial incentive to help the vaccine-injured, said Stirling. He is the founder of Insurance Collaboration to Save Lives.
ÒIf we were actually just screening for these people, the vast majority of these health issuesÑbefore they become catastrophicÑcould very easily be managed, not necessarily solved, but certainly managed with amazing medical advances and simple things like blood thinners, or changes in lifestyle,Ó he said.
ÒIf we can help at scale people understand their current health situation, then, absolutely, we can save a bunch of lives,Ó said Stirling.
Version: 23.4.2024
Adresse dieser Seite
Home
Jochen Gruber